(54.236.58.220) 您好!臺灣時間:2021/03/05 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉祉祥
研究生(外文):Chih-Hsiang Liu
論文名稱:垂直載重群樁之波動方程式時域解
論文名稱(外文):Time Domain Wave Equation Analysis for Axially Loaded Group Piles
指導教授:張德文張德文引用關係
指導教授(外文):Der-Wen Chang
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:151
中文關鍵詞:群樁波動方程式動力互制因子等值墩基
外文關鍵詞:group-pileswave equationdynamic interaction factorequivalent pier
相關次數:
  • 被引用被引用:13
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究建立含筏基群樁基礎受軸向動態載重行為之波動方程分析模式。群樁結構體可簡化為等值單一筏墩基礎,以有限差分法進行分析。基樁週遭土層支承以t-z、Q-z理論曲線模式之土壤彈簧、轉換阻尼係數,以及Novak動力阻抗函數提供之土壤彈簧與阻尼係數值模擬之。另參考前期研究(林光宗,1998)中根據Dobry and Gazatas(1988)建議之動力互制因子所推導之群樁基礎中單樁互制分析模式,並納入樁帽影響,以求取基樁反應。本研究分別針對等值墩基分析模式與群樁基礎中單樁互制分析模式進行程式模擬,並且探討群樁間距、土層勁度以及樁長與樁徑比值等參數改變對於基礎反應造成之影響,比較兩種模式的分析結果。
經由觀察分析所得可知:1.整體基礎反應將隨樁-土層勁度比值(Ep/Es)降低而減少,亦即土層勁度值愈高則基礎垂直受力所產生之位移量愈小;2.增加樁間距和樁直徑比值(S/d)將使筏基規模增大,基礎垂直受力反應將明顯地減少;3.改變樁長與樁半徑比值(l/r),亦即改變基樁長度,則對基礎垂直受力反應影響甚微;4.等值墩基模式分析與群樁基礎之單樁受力反應分析模式所得相似但略為保守。本研究探討群樁基礎之軸向動態反應,關於側向受力反應分析則有待進一步研究,以建立更完整的分析架構。
This study establishes the wave equation analytical model for piled raft foundation which is subjected to a vertical exciting force. In order to simplify the analysis, this study takes the group-pile as a single equivalent pier, and the corresponding wave equation is derived with the FD method. Soil spring constants and damping coefficients were founded by theoretic t-z and Q-z equations and a time dependent radiation damping model derived from Novak''s dynamic impedance functions (1974). Moreover, this study refers to the research of interactive single pile model, and estimates the response of the pile foundation with the cap.
From this study, following results were observed for piled raft foundation response: 1. The piled raft foundation response amplitude becomes smaller as the pile-soil stiffness contrast decreases. 2. The response amplitude decreases with the increase of the ratio of pile spacing and pile diameter. 3. There is less influence on the pile raft foundation response by variating the pile slenderness ratio. 4. Similar results were obtainable from the equivalent pier model and the interactive single pile model while the former yields more conservative solutions. The piled raft foundation response under the dynamic axially loads has been analyzed in this study. A more complete approach including the lateral loaded response needs to be further investigated.
目 錄
中文摘要一
英文摘要二
本文目錄Ⅰ
表目錄Ⅳ
圖目錄Ⅳ
第一章 緒論1
1-1 研究動機與目的1
1-2 研究方法與內容2
第二章 文獻回顧5
2-1 前言5
2-2 垂直基樁反應常用分析方法6
2-2-1 Winkler基礎模式7
2-2-2 有限元素法8
2-2-3 邊界元素法9
2-2-4 混合模式法10
2-3 群樁分析相關研究12
2-3-1 有限元素法13
2-3-2 混合模式法15
2-3-3 波傳分析法17
2-3-4 群樁效率19
2-4 動力阻抗函數20
2-5 土壤阻尼模式29
2-6 土壤彈簧模式33
2-7 數值分析程式介紹39
第三章 理論與推導43
3-1 前言43
3-2 等值墩基分析模式43
3-2-1 等值墩基模式44
3-2-2 波動方程式46
3-2-3 土壤參數選取51
3-3 群樁互制影響之單樁分析模式52
3-3-1 波動方程式52
3-3-2 互制土壤阻尼58
3-3-3 互制土壤彈簧60
3-3-4 土壤參數選取65
第四章 垂直載重群樁基礎行為研究67
4-1 前言67
4-2 動力荷重型態67
4-3 基本參數選擇69
4-4 群樁基礎等值墩基模式行為研究71
4-5 群樁基礎中單樁行為研究76
4-6 參數研究98
4-6-1樁距與樁徑比值影響98
4-6-2土壤-基礎勁度比值影響112
4-6-3樁細長比影響125
4-7 理論設計曲線138
4-8 討論143
第五章 結論與建議145
5-1 結論145
5-2 展望與建議146
參考文獻147
參考文獻
1. Rayleigh, L. (1945), Theory of Sound, Vol. 1, Dover Publications, New York, USA, 1945.
2. Christrian, J. T., Roesset, J. M., Desai, C. S. (1977), "Two and Three Dimension Dynamic Analysis", chapter 20, Numerical Methods in Geotechnical Engineering, ed. Desai, C. S. & Christrian, J. T., Mcgraw-Hill, Inc., pp. 683-718.
3. Chang, D. W. (1995), "Preliminary Investigation of Using Transformed Damping Coefficients in Time Domain Analysis", Proc., 7th Int. Conf. on Soil Dynamics and Earthquake Engineering, Greece, pp. 623-632.
4. 葉興鴻 (1996),"轉換輻射阻尼於基樁軸向、側向行為之模擬與應用",碩士論文,淡江大學土木工程研究所, 台灣, 淡水.
5. 歐陽金福 (1997),"垂直載重基樁土壤彈簧勁度與阻尼模式研究",碩士論文, 淡江大學土木工程研究所, 台灣, 淡水.
6. 林光宗 (1998),"群樁互制效應對基樁反應之影響",碩士論文, 淡江大學土木工程研究所, 台灣, 淡水.
7. Poulos, H. G. and Davis, E. H. (1980), "Pile Foundation Analysis and Design", John Wiley and Sons, Inc., New York.
8. Broms, B. B. (1964), "Lateral Resistance of Pile in Cohesive Soils", Journal of Soil Mechanics and Foundations Division, ASCE, Vol.90, No.SM2, pp. 122-155.
9. Matlock, H. and Reese, L. C. (1960), "Generalized Solution for Laterally Loaded Piles", Journal of Soil Mechanics and Foundations Division, ASCE, Vol.86, No.SM5, pp. 1220-1246.
10. Poulos, H. G. (1968), "Analysis of the Settlement of Pile Groups", Geotechnique 18, No. 4, pp. 449-471.
11. Poulos, H. G. (1971), "Behavior of Laterally-Loaded Piles II: Pile Groups", Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 97, SM5, pp.733-751.
12. Butterfield, R. and Banerjee, P. K. (1971), "The Elastic Analysis of Compressible Piles and Pile Groups", Geotechnique 21, No. 1, pp.43-60.
13. Banerjee, P. K. and Davis, T. G. (1977), "Analysis of Pile Group Embedded in Gibson Soil", Proc., 9th ICSMFE, Tokyo, Vol. 1, pp. 381-386.
14. Terzaghi, K. and Peck, R. B. (1967), Soil Mechanics in Engineering Practice, 2nd Ed., New York: Wiley.
15. Tomlinson, M.J. (1971), "Some Effects of Pile Driving on Skin Friction", Proc., ICE Conf: Behavior of Piles, London, pp.107-114.
16. Poulos, H. G. (1993), "Settlement Prediction for Driven Piles annd Pile Groups", Vertical and Horizontal Deformation of Foundations and Embankments, Geotechnical Special Publication, ASCE, Vol. 2, No. 40, pp. 1629-1649.
17. Van Impe, W. F. (1991), "Deformations of Deep Foundations", Proc. 10th Eur. Conf. Soil Mechs. Foundn. Eng., Florence, 2, pp. 1031-1062.
18. Randolph, M.F. and Worth, C.P. (1979), "An Analysis of the Vertical Deformation of Pile Groups", Geotechnique, 29(4), pp. 423-439.
19. Hirayama, H. (1991), "Pile Group Settlement Interaction Considering Soil Nonlinearity", Comp. Meth. Adv. Geomechs., 1, pp. 139-144.
20. Butterfield, R. and Douglas, R. A. (1981), Flexibility Coefficients for the Design of Piles and Pile Groups. Tech. Note 108. London : CIRIA.
21. Poulos, H. G. and Hewitt, C. M. (1986), "Axial Interaction between Dissimilar Piles in a Group", Proc. 3rd Int. Conf. Numer. Methods in Offshore Piling, pp. 253-270.
22. 李俊輝 (1996),"以非線性地盤反力曲線法評估側向荷重樁之行為",碩士論文, 台灣大學土木工程研究所, 台灣, 台北.
23. Smith, E. A. L. (1960), "Pile Driving Analysis by the Wave Equation", Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 86,No.SM4, pp. 35-61.
24. Novak, M. (1974), "Dynamic Stiffness and Damping of Piles", Canadian Geotechnical Journal, Vol. 11, pp. 574-598.
25. Novak, M. and El Sharnouby, B. (1983), "Stiffness and Damping Constants of Single Piles", Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp. 153-168.
26. Kim, Y. S., Roesset, J. M. and Stokoe, K. H., II, (1987), "Interpretation of Vertical Vibration Tests on Small Scale Piles", Dynamic Response of Pile Foundation - Experiment, Analysis and Observation, Geotechnical Special Publication No. 11, ASCE, 1987, pp. 110-125.
27. Nogami, T., Otani, J., Konagai, K. and Chen, H. L. (1992), "Nonlinear Soil-Pile Interaction Model for Dynamic Lateral Motion", Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 1, pp. 89-106.
28. El Naggar, M. H. and Novak, M. (1994), "Nonlinear Axial Interaction in Pile Dynamics", Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 4, pp. 678-696.
29. Prakash, S. and Kumar, S. (1996), "Nonlinear Lateral Pile Deflection in Sands", Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 2, pp. 130-138.
30. Roesset, J. M. (1984), "Dynamic Stiffness of Pile Groups", Pile Foundations, New York : ASCE.
31. Kaynia, A. M. and Kausel, E. (1982), "Dynamic Behaviour of Pile Groups", 2nd Inter. Conf. Numer. Meth. Offshore Piling, Austin, Texas, pp. 509-532.
32. Banerjee, P. K. and Sen, R. (1987), "Dynamic Behavior of Axially and Laterally Loaded Piles and Pile Group", Dynamic Behavior Offoundation and Buried Structures, Elsevier Applied Science, pp. 95-133.
33. Poulos, H. G. (1989), "Cyclic Axial Loading Analysis of Piles in Sand", Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp. 836-852.
34. Prakash, S. and Sharma, H. D. (1990), "Pile Foundation in Engineering Practice", John-Wiley & Sons, Inc.
35. Clancy, P. and Randolph, M. F.(1993),"An Approximate Analysis Procedure for Piled Raft Foundations", Int. J. Numer. Anal. Meth. Geomech., Vol. 17, pp. 849-869.
36. Randolph, M.F.(1994), "Design Method for Pile Groups and Pile Rafts", XII ICSMFE, New Delhi, India, pp.61-82.
37. Russo, G. (1998), "Numerical Analysis of Piled Rafts", Int. J. Numer. Anal. Meth. Geomech., Vol. 22, pp. 477-493.
38. Mylonakis, G. and Gazetas, G. (1998), "Vertical Vibration and Additional Distress of Grouped Piles in Layered Soil", Soils and Foundations, Vol. 38, No.1, pp. 1-14.
39. Husein, A.I. and Liang, R. Y. (1996), "Dynamic Soil-Pile Interaction Parameter Identification Using Transfer Function Technique", Soils and Foundations, Vol. 36, No.3, pp. 67-74.
40. Prakash, S. and Puri, V. K. (1988), Foundations for Machines: Analysis and Design, John Wiley and Sons, Canada, pp. 438-458.
41. Chang, D. W. and Yen, S. H. (1999), "Time-Domain Wave Equation Analysis of Single Piles Utilizing Transformed Radiation Damping", Soils and Foundations, JGS. , Vol. 29, No. 2.
42. Roesset, J. M. and Kausel, E. (1980), "FOUR2 Program User''s Manual", Note for Time Integration Method in Structural Dynamics Course, Dept. Of Civil Engr., MIT, 1977.
43. Seed, H.B. and Reese, L.C. (1957), "The Action of Soft Clay along Friction Piles", Transactions of ASCE, Vol. 122, pp. 731-754.
44. Coyle, H. M. and Reese, L. C. (1966),"Load Transfer for Axially Loaded Piles in Clay", Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 92, No. SM-2, March, pp. 1-26.
45. Liang, M. and Husein, A.I. (1993), "Simplified Dynamic Method for Pile-Driving Control", Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 4, pp. 694-713.
46. Chin, J. T. and Poulos, H. G. (1991),"Axially Loaded Vertical Piles and Pile Groups in Layered Soil", Int. J. Numer. Anal. Meth. Geomech., Vol. 15, pp.497-511.
47. Hirayama, H. (1990), "Load-Settlement Analysis for Bored Piles Using Hyperbolic Transfer Founctions", Soils and Foundations, Vol. 30, No.1, pp. 55-64.
48. Hadjian, A. H., Fallgren, R. B. and Tufenkjian, M. R. (1992), "Piles Under Dynamic Loads", American Society of Civil Engineerings, New York, pp. 22-26.
49. Randolph, M.F.(1994), "Design Method for Pile Groups and Pile Rafts", XII ICSMFE, New Delhi, India, pp.61-82.
50. Dobry, R. and Gazetas, G. (1988), "Simple Method for Dynamic Stiffness and Damping of Floating Pile Groups", Geotechnique 38, No. 4, pp.557-574.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔