跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/12 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江益璋
研究生(外文):Yi-Chang Chiang
論文名稱:矩斷面高層建築之氣動力阻尼評估
論文名稱(外文):Evaluation on the Aerodynamic Damping of Rectangular High-rise Buildings
指導教授:鄭啟明鄭啟明引用關係
指導教授(外文):Chii-Ming Cheng
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:135
中文關鍵詞:氣彈力矩形斷面風洞高層建築氣動力阻尼
外文關鍵詞:aeroelasticrectangular cross-sectionwind tunnelhigh-rise buildingaerodynamic damping
相關次數:
  • 被引用被引用:4
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當高層建築考慮風力作用時,其設計常以結構位移反應為分析的依據,一般可分為順風向、橫風向及扭轉向三方向位移反應。由於高層建築所受的風力具有隨機的特性,因此,無法單純以靜力視之。高層建築受風力作用的位移計算中,除了順風向反應有大致可靠的預測模式外,橫風向與扭轉向反應由於影響的變數太多且氣動力行為複雜難以準確的掌握,所以無法提出可靠的數值預測結果,尤其在低Scruton No.(低質量、低阻尼)的高層建築結構系統時,會因風力造成過大的位移反應,導致氣彈力不穩定現象,對結構產生極大的危害,因此,在低Scruton No.的結構系統進行氣彈力實驗是有其必要性。
本文主要是以順風向、橫風向及扭轉向三軸向之氣彈模型實驗,藉由兩種淺矩形B/D=0.4、0.6斷面模型、兩種流場(開闊地形、都市地形)及一系列的結構Scruton No.參數為控制變因,觀察其氣彈力模型在順風向和橫風向的位移反應,求出橫風向氣動力阻尼,並與方形、深矩形B/D=2.0模型氣彈力實驗作一相對的探討。
淺矩形和方形斷面結構於開闊地形流場中Scruton No.參數較低(約為3.5)時,會有顯著的氣彈力現象,且於斷面長寬比B/D=0.6時,氣彈力實驗之橫風向擾動位移反應有最大的峰值產生;又當Scruton No.參數較高(約為6.0)時,氣彈力現象減弱,且方柱之氣彈力實驗之橫風向擾動位移反應有最大的峰值產生。
於都市地形流場中,Scruton No.參數較低(約為3.5)時,僅有淺矩形B/D=0.4、0.6斷面結構有顯著的氣彈力現象,方形和深矩形B/D=2.0斷面結構由於正值氣動力阻尼作用,橫風向擾動位移較小;又當Scruton No.參數較高(約為6.0)時,氣彈力現象減弱,淺矩形B/D=0.6斷面結構之氣彈力實驗之橫風向擾動位移反應有最大的峰值產生。
Building''s motion in the alongwind, acrosswind and torsional directions are important on the design of high-rise buildings. The corresponding wind loads are of random nature, can not be taken as static loads. Excessive motion in the acrosswind direction can introduce extra motion-related-force and cause aerodynamic instability. For these cases, the aeroelastic experiment is important among all wind tunnel investigations. High-rise buildings with small Scruton No. (light mass, small damping) exhibited stronger aerodynamic instability.
Triple-mode, two sway modes and one torsional mode, model were built to carry out the aeroelastic tests. Two kinds of width-to-depth ratio, B/D=0.4 and 0.6, characteristics of flow field, and many kinds of Scruton No. were chosen to be the experimental parameters. The building''s alongwind and acrosswind displacement were measured. Then, the acrosswind aerodynamic damping was evaluated and compared with square, depth-rectangular section B/D=2.0 model''s aeroelastic experiment results.
Experimental results show that, when Scruton No. is about 3.5, the shallow rectangular cross-section B/D=0.6 building exhibited noticeable aerodynamic instability in the open terrain flow field. In the city flow field, similar behavior was observed for buildings with width-to-depth ratio of 0.6. When the Scruton No. is close to 6, the aeroelastic experiment results agreed well to the analytical predictions which includes the aerodynamic damping effect. And the square section model in the open terrain flow field has the maximum acrosswind displacement, the width-to-depth ratio of 0.6 rectangular model in the city flow field has the maximum acrosswind displacement. Increase of Scruton No. tends to cause aerodynamic stability on buildings.
第一章 緒論
1.1 前言 1-1
1.2 研究內容1-2
1.3 研究方法1-3
1.4 論文架構1-4
第二章文獻回顧
2.1 結構物振動 2-1
2.1.1 逼近流及尾跡對結構物造成之運動機制2-1
2.1.2 順風向振動 2-3
2.1.3 橫風向振動 2-3
2.1.4 扭轉向振動 2-10
2.2 氣動力阻尼 2-11
2.3 風載重的相關性 2-14
第三章理論背景
3.1 大氣邊界層 3-1
3.1.1 平均風速剖面 3-1
3.1.2 紊流強度 3-4
3.1.3 紊流長度尺度 3-4
3.1.4 縱向擾動風速頻譜 3-5
3.1.5 縱向擾動風速交相關頻譜3-6
3.2 風對結構物的作用 3-7
3.2.1 氣動力現象 3-8
3.2.2 氣彈力現象 3-10
3.3 結構動力特性及氣彈力實驗模擬3-11
3.3.1 結構動力學理論 3-11
3.3.2 氣彈力實驗模擬 3-15
3.4 受風載重下結構物的位移反應計算3-17
3.4.1 順風向反應 3-18
3.4.2 橫風向反應 3-21
3.4.3 扭轉向反應及振態修正 3-21
3.4.4 順、橫風向及扭轉向氣彈力實驗之角隅位移
反應計算 3-24
3.5 散漫數據分析 3-25
第四章實驗配置、量測與數據分析
4.1 流場配置與量測 4-1
4.1.1 流場配置 4-1
4.1.2 風速量測與設置 4-3
4.1.3 尾跡之量測與設置 4-4
4.2 氣彈力模型之模擬、率定及量測 4-5
4.2.1 氣彈模型之設計 4-6
4.2.2 結構頂點位移率定及結構動力特徵率定 4-8
4.2.3 結構位移之量測 4-10
4.3 數據採樣技術 4-11
4.4 數據分析方法與其精確度 4-12
第五章 實驗結果與討論
5.1 矩形斷面結構物在兩流場下的相互關係5-2
5.1.1前人實驗所得之風力頻譜特性 5-2
5.1.2依風力頻譜計算擾動位移 5-3
5.2 本文氣彈力實驗 5-4
5.2.1實驗之結構參數對氣彈力現象的影響5-5
5.2.2順風向位移 5-6
5.2.3橫風向位移 5-7
5.2.4淺矩形斷面模型的氣彈力行為 5-11
5.3 前人氣彈力實驗與本實驗結果綜合討論5-13
5.3.1方形斷面B/D=1.0 5-13
5.3.2深矩形斷面B/D=2.0 5-16
5.3.3長寬比對結構位移的影響 5-17
5.4 推估氣動力阻尼 5-18
5.4.1長寬比B/D=0.4 5-18
5.4.2長寬比B/D=0.6 5-20
5.4.3與文獻比較 5-22
5.5 結構振動對尾跡渦流的影響 5-23
第六章結論與建議
6.1 結論 6-1
6.1.1淺矩形斷面結構體氣彈力實驗位移反應結論6-1
6.1.2淺矩形斷面的氣動力阻尼結論 6-2
6.1.3淺矩形斷面結構振動對尾跡渦流的影響結論6-2
6.1.4矩形斷面結構體橫風向位移反應結論6-3
6.2 建議 6-4
參考文獻R-1~R-5
附表E-1~E-2
附圖一F-1~F-10
附圖二G-1~G-28
圖表目錄
表[5-1] 氣彈實驗結構模型特性E-1
表[5-2] 氣彈實驗控制參數值一覽表E-1
表[5-3] 史特赫數E-2
表[5-4] 靜止矩柱的平均阻力係數E-2
表[5-5] 兩種長寬比矩柱在兩流場下臨界約化風速-位移表E-2
圖 3-1 紊流長度尺度參數 C、m 和高度Z0關係圖F-1
圖 4-1 風洞實驗立面圖和平面圖F-2
圖 4-2 兩種流場BL1、BL2參數圖F-2
圖 4-3 錐形擾流板基座寬度和流場關係圖F-3
圖 4-4 錐形擾流板尺寸圖F-4
圖 4-5 粗糙元素尺寸圖F-5
圖 4-6 開闊地形(BL1)及都市地形(BL2)邊界層模擬圖F-6
圖 4-7 皮托管設置、探針設置示意圖F-7
圖 4-8 結構模型幾何形狀示意圖F-8
圖 4-9 風向示意圖F-8
圖 4-10 氣彈實驗模型剖面圖F-9
圖 4-11 實驗儀器流程圖F-10
圖5-1 各靜止矩柱之順風向風力頻譜G-1
圖5-2 各靜止矩柱之橫風向風力頻譜G-2
圖5-3 重複實驗:高寬比7.0方形斷面氣彈力實驗G-3
圖5-4 重複實驗:高寬比7.0方形斷面氣彈力實驗G-4
圖5-5 長寬比B/D=0.4在BL1流場風速-反應圖(1)G-5
圖5-6 長寬比B/D=0.4在BL1流場風速-反應圖(2)G-6
圖5-7 長寬比B/D=0.4在BL2流場風速-反應圖(1)G-7
圖5-8 長寬比B/D=0.4在BL2流場風速-反應圖(2)G-8
圖5-9 長寬比B/D=0.6在BL1流場風速-反應圖(1)G-9
圖5-10 長寬比B/D=0.6在BL1流場風速-反應圖(2)G-10
圖5-11 長寬比B/D=0.6在BL2流場風速-反應圖(1)G-11
圖5-12 長寬比B/D=0.6在BL2流場風速-反應圖(2)G-12
圖5-13 長寬比B/D=0.4高質量模型在BL1流場
風速-橫風向位移圖G-13
圖5-14 長寬比B/D=0.4低質量模型在BL1流場
風速-橫風向位移圖G-13
圖5-15 長寬比B/D=0.4高質量模型在BL2流場
風速-橫風向位移圖G-14
圖5-16 長寬比B/D=0.4低質量模型在BL2流場
風速-橫風向位移圖G-14
圖5-17 長寬比B/D=0.4在兩流場下橫風向SCR.NO.-尖峰位移
比較圖G-15
圖5-18 長寬比B/D=0.6在兩流場下橫風向SCR.NO.-尖峰位移
比較圖G-15
圖5-19 長寬比B/D=0.4、0.6在BL1流場下橫風向SCR.NO.-尖峰
位移比較圖G-16
圖5-20 長寬比B/D=0.4、0.6在BL2流場下橫風向SCR.NO.-尖峰
位移比較圖G-16
圖5-21 長寬比B/D=0.4、0.6、1.0、2.0在BL1流場下橫風向
SCR.NO.-尖峰位移比較圖G-17
圖5-22 長寬比B/D=0.4、0.6、1.0、2.0在BL2流場下橫風向
SCR.NO.-尖峰位移比較圖G-17
圖5-23 長寬比B/D=0.4在BL2流場之風速-氣動力阻尼圖G-18
圖5-24 長寬比B/D=0.6在BL1流場之風速-氣動力阻尼圖G-19
圖5-25 長寬比B/D=0.6在BL2流場之風速-氣動力阻尼圖G-20
圖5-26 42LB[3.5]之氣動力阻尼與廖[28]比較G-21
圖5-27 42SC[3.9]之氣動力阻尼與廖[28]比較G-21
圖5-28 61LB[5.2]之氣動力阻尼與廖[28]比較G-22
圖5-29 61SY[3.3]之氣動力阻尼與廖[28]比較G-22
圖5-30 62LB[5.2]之氣動力阻尼與廖[28]比較G-23
圖5-31 62SY[3.7]之氣動力阻尼與廖[28]比較G-23
圖5-32 淺矩柱在流場下風速-氣動力阻尼圖,文獻[27]G-24
圖5-33 淺矩柱在BL2流場下風速-氣動力阻尼圖G-24
圖5-34 [41SY]與[42SY]風速-尾跡比較圖G-25
圖5-35 [61SY]與[62SY]風速-尾跡比較圖G-26
圖5-36 [41SY]與[61SY]風速-尾跡比較圖G-27
圖5-37 [42SY]與[62SY]風速-尾跡比較圖G-28
[1]. Davenport, A.G., Novak, M., "Part 2:Vibration of Structures Induced by Wind", Shock and Vibration Handbook, McGraw-Hill (1976), p21-43.
[2]. Ahsan Kareem, "Dynamic Response of High-rise Buildings to Stochastic Wind Loads", J. of Wind Engineering and Industrial Aerodynamics, Vol.41-44 (1992), p1101-1112.
[3]. Davenport, A.G., "Gust Loading Factors", J. of Structural Division, ASCE, Vol.93, No.ST3, June 1967, p11-34.
[4]. Vickery, B.J., "On the Reliability of Gust Loading Factors", Proc. Technical Meeting Concerning Wind Load on Buildings Science Series 30, Washington, D.C., (1970).
[5]. Vellozzi, J. and Cohen, E, "Gust Response Factors", J. of Structural Division, ASCE, Vol.97, No.ST6, June 1968, p1295-1313.
[6]. Simiu, E., "Equivalent Static Wind Loads for Tall Buildings Design", J. of Structural Division, ASCE, Vol.102, No.ST4, April 1976, p719-737.
[7]. Simiu, E., "Revised Procedure for Estimating Alongwind Response", J. of Structural Division, ASCE, Vol.106, No.ST1, January 1980, p1-10.
[8]. Balendra, T. and Nathan, G.K., "Longitudinal, Lateral and Torsional Oscillations of a Square Section Tower Model in an Atmospheric Boundary Layer", Eng. Struct. , Vol.9 (1987), p218-224.
[9]. Davenport, A.G. and Novak, M., "Part 2 : Vibration of Structures Induced by Wind", Shock and Vibration Handbook, McGraw Hill (1976), p21-43
[10]. Kwok, K.C.S. and Melbourne, W.H., "Wind-induced Lock-in Excitation of Tall Structures", J. of the Structural Division, Vol. 107 (1981), No. ST1, p57-72
[11]. Ahsan Kareem, M.ASCE, "Acrosswind Response of Buildings", J. of the Structural Division, Vol. 108 (1982), No. ST4 p869-887
[12]. Takeo Matsumoto, "On the Across-wind Oscillation of Tall Buildings ", J. of Wind Engineering and Industrial Aerodynamics, Vol. 24 (1986), p69-85
[13]. Balendra, T. and Nathan, G.K., "Longitudinal, Lateral and Torsional Oscillations of a Square Section Tower Model in an Atmospheric Boundary Layer", Eng. Struct., Vol. 9 (1987),p218-224
[14]. Vickery, B.J. and Steckley, A., "Aerodynamic Damping and Vortex Excitation on an Oscillating Prism in Turbulent Shear Flow", J. of Wind Engineering and Industrial Aerodynamics, Vol. 49 (1993),p121-140
[15]. Kawai, H., "Bending and Torsional Vibration of Tall Buildings in Strong Wind", J. of Wind Engineering and Industrial Aerodynamics, Vol.50 (1993), p281-288.
[16]. Kwok, K.C.S. and Melbourne, W.H., "Wind-induced Lock-in Excitation of Tall Structures", Journal of the Structural Division, Vol.107 (1981), No.ST1, p57-72.
[17]. Kawai, H., "Effect of angle of attack on vortex induced vibration and galloping of tall buildings in smooth and turbulent boundary layer flows", J. of Wind Engineering and Industrial Aerodynamics, Vol.54/55 (1995), p125-132.
[18]. Takeo Matsumoto, "On the Across-wind Oscillation of Tall Buildings", J. of Wind Engineering and Industrial Aerodynamics, Vol.24 (1986), p69-85.
[19]. Zhang, W.J., Xu, Y.L. and Kwok, K.C.S., "Torsional Vibration and Stability of Wind-excited Tall Buildings with Eccentricity", J. of Wind Engineering and Industrial Aerodynamics, Vol.50 (1993), p299-308.
[20]. Isyumov, N. and Poole, M., "Wind Induced Torque on Square and Rectangular Building Shapes", J. of Wind Engineering and Industrial Aerodynamics, (1983), p183-196.
[21]. Davenport, A.G. and Tschanz, T., Proc. 4th. U.S. National Conference on Wind Engineering, Seattle, (1981) 205.
[22]. Isyumov, N., Fediw, A.A., Colaco, J. and Banavalkar, P.V., "Performance of a Tall Building Under Wind Action", J. of Wind Engineering and Industrial Aerodynamics, Vol.41-44 (1992), p1053-1064.
[23]. Hidetoshi Hayashida, Yoshihiro Mataki, and Yoshiteru Iwasa, "Aerodynamic Damping Effects of Tall Building for a Vortex Induced Vibration", J. of Wind Engineering and Industrial Aerodynamics, Vol.41-44 (1992), p1973-1983.
[24]. Vickery, B.J. and Steckley, A., "Aerodynamic Damping and Vortex Excitation on an Oscillating Prism in Turbulent Shear Flow", J. of Wind Engineering and Industrial Aerodynamics, Vol.49 (1993), p121-140.
[25]. Kareem, A., "Lateral-Torsional Motion of Tall Building to Wind Loads", J. of Struct. Engi. , Vol.111, No.11, Nov. (1985).
[26]. 鄭啟明, 盧博堅, 蔡明樹, "正方斷面高層建築的橫風向氣彈力行為", 中華民國第三屆結構工程研討會, (1996), p1263-1272.
[27]. Marukawa, H., Kato, N., Fujii, K. and Tamura, Y., "Experimental Evaluation of Aerodynamic Damping of Tall Buildings" J. of Wind Engineering and Industrial Aerodynamics, Vol. 59 (1996), p177-190
[28]. 廖甫斌, "橫風向振動對三維矩柱體所受風力特性的影響",淡江大學土木工程研究所碩士論文,(1996).
[29]. Thoroddsen, S.T., Peterka, J.A. and Cermak, J.E., "Correlation of Components of Wind-loading on Tall Buildings", J. of Wind Engi. Ind. Aerodyn. ,Vol.28 (1988), p351-360.
[30]. Tallin, A. and Ellingwood, B. "Wind Induced Lateral-torsional Motion of Building", J. of Struct. Engi. , ASCE, Vol.111, No.10, Oct. (1985), p2197-2213.
[31]. 鄭啟明, 盧博堅, 傅仲麟, "三維矩斷面柱体所受之扭轉向風力特性", 大陸第五屆全國風工程及工業空氣動力學學術會議論文集, (1998), pI-15~I-20.
[32]. Davenport, A.G., "The Relationship of Wind Structure to Wind Loading", Proc. Symp. on Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K., Her Majesty''s Stationary Office, London, (1965), p53-102.
[33]. American National Standard A58.1-1982 Minimum Design Loads for Buildings and Other Structures, American National Standard Institute, Inc., New York.
[34]. Chamberlain, A.C., "Roughness Length of Sea, Sand, and Snow", Bound. Layer Meteorol., 25 (1983), 405-409.
[35]. Counihan, J., "Adiabatic Atmospheric Boundary Layer: a Review and Analysis of Data From the Period 1880-1972", Atmos. Environ., 9 (1975), p871-905.
[36]. Davenport, A.G., "The Spectrum of Horizontal Gustiness Near the Ground in High Winds", J. Royal Meteorol. Soc., 87 (1961), p194-211.
[37]. Kaimal, J.C. et al., "Spectral Characteristic of Surface-layer Turbulence", J. Royal Meteorol. Soc., 98, (1972), p563-589.
[38]. Davenport, A.G., "The Dependence of Wind Load upon Meteorological Parameters", in Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures, University of Toronto Press. Toronto, (1968), p19-82.
[39]. Emil Simiu, Robert H. and Scanlan, P.E., "Wind Effects on Structures", p214.
[40]. Whitbread, R.E., "Model Simulation of Wind Effects on Structures", Proceeding of the Conference on Wind Effects on Buildings and Structures (1963), p284-306.
[41]. Kareem, A., "Wind Excited Response of Buildings in Higher Modes", J. Struct. Div., ASCE, Vol.107, NO.ST4, April (1981), p701-706.
[42]. Davenport, A.G., Inst. Civil Eng. Paper No.6480, August (1961), p449-472.
[43]. Irwin, H.P.A.H., "The Design of Spire for Wind Simulation", J. of Wind Engineering and Industrial Aerodynamics, Vol.7 (1981), p361-366.
[44]. 蕭葆羲, "應用數位型電腦線上控制及處理分析熱絲及熱膜量測紊流之研究",中央研究院物理所.
[45]. 蕭葆羲, "熱流速儀與數位訊號處理在紊流量測上之應用", 1986, 中央研究院物理所.
[46]. Townsend, A.A., "The Structure of Turbulent Shear Flow", Cambridge Univ. Press, (1956), p.315.
[47]. Bedat, J.S. and Piersol, A.G., "Random Data Analysis and Measurement Procedures", John Wiley & Sonc Inc. , New York.
[48]. 陳若華,"結構振動與流場互制現象之風洞實驗研究",淡江大學水資源及環境工程研究所博士論文,(1996).
[49]. 蔡明樹, "高層建築氣彈力現象之風洞研究", 1996, 淡江大學土木工程研究所碩士論文
[50]. 蔡孟緯, "高層建築振動耦合之氣彈力現象風洞研究", 1996, 淡江大學土木工程研究所碩士論文
[51]. 陳景昇, "長寬比對矩形斷面高層建築氣彈力現象之風洞研究", 1999, 淡江大學土木工程研究所碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top