(3.238.186.43) 您好!臺灣時間:2021/03/02 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊建國
研究生(外文):Chien-Kao Yang
論文名稱:考慮控制與結構互制效應之LQG主動控制於足尺主動斜撐樓房之振動台驗證
論文名稱(外文):Shake Table Verification of LQG Control of a Full-Scale Actively Braced Building Considering Control-Structure Interaction
指導教授:吳重成
指導教授(外文):Jong-Cheng Wu
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:186
中文關鍵詞:Active Structural ControlFull-Scale ModelActuatorTime-DelayControl-Structure-InteractionBalanced State ReductionLinear Quadratic Gaussian (LQG) MethodDynamic Output Feedback
外文關鍵詞:主動控制足尺模型致動器時間延遲控制結構互制效應平衡狀態降階LQG理論動態輸出回饋
相關次數:
  • 被引用被引用:7
  • 點閱點閱:216
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,結構主動控制應用於受地震力作用之土木結構,已被全世界廣泛的探討。本研究乃於台灣國家地震中心之振動台上,裝置一足尺三層樓房,且於第一層樓裝置主動斜撐裝置,以振動台試驗,來驗證主動控制應用於實體結構物之可行性。為了探討廣受討論之主動控制機構(例如:致動器)所產生的時間延遲問題,在控制器設計前之系統識別,乃考慮結構與控制機構間之互制效應,同時亦採用降階理論之平衡降階法以落實實際應用。控制器的設計是採用LQG理論,應用一動態輸出回饋方程式,以量測絕對加速度作為即時(On-Line)控制命令的計算,其控制目標在於同時降低樓房之層間位移量與絕對加速度。
本研究共設計五組LQG控制器,並於足尺主動斜撐樓房進行振動台模擬實驗,得到以下幾點結論:(1)結構與主動控制機構間確實有相當的互制效應的產生。(2)經由時間域與頻率域的分析發現,假若適當地選擇控制參數(權重參數),LQG控制器的確充分發揮其控制效果與強健性。(3)考慮結構與控制機構之互制效應之系統識別模型,經由理論模擬與實驗之比較,證明有不錯的準確度。因此本文最後可得到一總結,即是,使用主動控制於足尺房屋之應用過程中,若能考慮結構與控制機構間之互制效應,以量測加速度來作為回饋控制之主動控制方式,已經由振動台實驗驗證,證實其理論確實可行且獲得不錯的控制效果。
Recently, the application of active structural control to seismic-excited civil structures has been broadly investigated worldwide. To justify the applicability of active control to actual structures, a full-scale three-story building equipped with an active bracing device on the first floor was built on the shake table of National Center for Research on Earthquake Engineering (NCREE) of Taiwan. To investigate the controversial issue of time delay due to active devices such as actuators, this paper takes into account the effect of Control-Structure-Interaction (CSI) in the system identification prior to the design of active controller. A state reduction method, the so-called balanced state reduction, is also presented to facilitate the implementation of active controllers. The advanced control strategy, Linear Quadratic Gaussian (LQG) method, is used to achieve the control objective that is to reduce the interstory displacements and absolute accelerations of the building simultaneously. As such, a dynamic output feedback equation using the measurements of absolute accelerations as feedback quantities is formed for on-line computation of the control command.
Five sets of active controller were designed and implemented to the actively braced full-scale building and the experimental results by shaking table tests show that (i) the CSI effect in the building is significant, (ii) as observed by time domain and frequency domain analyses, the control performance of LQG controllers are quite effective and robust if appropriate control parameters (weighting parameters) are chosen, and (iii) comparing with the experimental results, the analytical model identified by taking the CSI effect into account can be used to simulate the structural responses reasonably well. Therefore, by considering the CSI effect, the applicability of active control using acceleration feedback to a full-scale building is verified successfully through shaking table tests and the performance is proved to be effective.
第一章導論1
1.1研究動機1
1.2文獻回顧3
1.3國家地震中心主動斜撐控制系統簡介5
1.3.1振動台簡介[25]5
1.3.2主動斜撐構件之介紹[24]6
1.4本文內容6
第二章系統識別8
2.1曲線擬合(CURVE-FITTING)[11]8
2.2控制典型式(CONTROLLABLE CANONICAL FORM)12
2.3結構物包含主動斜撐元件之系統識別16
第三章降階控制(REDUCED-ORDER CONTROL)21
3.1平衡狀態降階(BALANCED-STATE REDUCTION)22
第四章LINEAR QUADRATIC REGULATOR(LQR)理論28
4.1LQR最佳控制器理論推導28
第五章LINEAR QUADRATIC GAUSSIAN (LQG) 理論34
5.1控制器設計34
5.2卡氏重建器設計36
5.3動態輸出回饋方程式42
5.4離散化狀態方程式43
第六章實驗過程與結果比較48
6.1實驗儀器設備48
6.1.1振動台48
6.1.2足尺寸三層鋼架構48
6.1.3主動斜撐元件48
6.1.4感應計49
6.2實驗流程49
6.2.1無控實驗49
6.2.2系統識別實驗50
6.2.3降階系統61
6.2.4LQG控制實驗63
6.3實驗結果與數值模擬比較65
6.3.1LQG有控與無控狀態下在實驗值的比較65
6.3.2在有控狀態下數值模擬與實驗資料比較69
6.3.3綜合整理70
第七章結論與展望71
[1] Abdel-Rohman, M., Quintana, V. H. and Leipholz, H. H., "Optimal Control of Civil Engineering Structures", ASCE Journal of Engineering Mechanics Division, Vol. 106, No. EMI, PP57-73, 1980.
[2] Brogan, W., "Modern Control Theory", Prentice-Hall, 1991.
[3] Bryson, A. E. and Ho, Y.C., "Applied Optimal Control: Optimization, Estimation and Control", Taylor & Francis, PA, 1975.
[4] Butler, H, "Model Reference Adaptive Control: From Theory to Practice", Prentice Hall, 1992.
[5] Chung, L. L., Lin, R. C., Soong, T. T. and Reinhorn, A. M., "Experiments on Active Control for MDOF Seismic Structures", ASCE J. of Engineering Mechanics, Vol. 115, No. 8 pp.1609~1627, 1989.
[6] Chung, L.L., Lin, C.C. and Chu, S.Y., "Optimal Direct Feedback of Structural Control", ASCE Journal of Engineering Mechanics, Vol. 119, pp. 2157~2173, 1993.
[7] Dyke, S. J., Spencer, B. F., Quast, P., Sain, M. K., Kaspair, D.C. and Soong, T. T., "Experimental Verification of Acceleration Feedback Control Strategies for An Active Tendon System", National Center for Earthquake Engineering Research, NCEER-94-0024.
[8] Dyke, S. J., Spencer, B.F., Belknap, A. E., Ferrell, K. J., Quast, P. and Sain, M. K., "Absolute Acceleration Feedback Control Strategies for the Active Mass Driver", Proc. 1st World Conference on Structural Control, Vol 2, pp. TP1: 51~TP1: 60, 1994.
[9] Francis, B. A., "A Course in H∞ Control Theory", Springer-Verlag, 1987.
[10] Ghaboussi J. and Joghataie A., "Active Control of Structures Using Neural Networks", J. Engrg. Mech., ASCE, Vol.121, No.4, pp. 555-566, 1995.
[11] Kelly, L. G., "Handbook Of Numerical Methods and Applications, Chapter 5 - Curve Fitting and Data Smoothing", Addison - Wesley Pub. Co. Inc., 1967.
[12] Kim, J., Moon, Y. and Zeigler, B., "Design Fuzzy Net Controllers Using Genetic Algorithms", IEEE Control Systems, pp. 66-72, 1995.
[13] Meirovitch, L., "Dynamics and Control of Structures", Wiley, NY, 1990.
[14] Moore, B. C., "Principle Component Analysis in Linear Systems: Controllability, Observability and Model Reduction", IEEE Transactions on Automatic Control, Vol. 26, No. 1, pp.17~32, 1981.
[15] Paraskevopoulor, P. N., "Digital Control Systems", Prentice Hall, 1996.
[16] Porter, B. and Crossley, R., "Modal Control: Theory and Applications", Taylor & Francis, 1972.
[17] Soong, T. T., "Active Structural Control: Theory and Application", Longman Scientific and Technical, NY, 1990.
[18] Suhardjo, J., Spencer, B.F. and Kareem, A., "Frequency Domain Optimal Control of Wind-Excited Buildings", ASCE Journal of Engineering Mechanics, Vol. 118, No. 12, PP2463~2481, 1992.
[19] Utkin, V. I., "Sliding Mode in Control Optimization", Springer-Verlag, Bertin, 1992.
[20] Wu, J. C., Yang J.N., "Active Control of a 310 Meter TV Transmission Tower under Stochastic Wind ", ASCE J. of Structural Engineering, Vol. 124, No. 11 pp.1302~1312, 1998.
[21] Wu, J. C., Yang, J. N. and Schmitendorf, W., "Reduced-order H∞ and LQR Control for Wind-excited Tall Buildings", Engineering Structures, Vol, 120, No. 3, pp.222~236, 1998.
[22] Yang, J.N. "Application of Optimal Control Theory to Civil Engineering Structures", ASCE, Journal of Engineering Mechanics division, Vol. 101, No. EM6, pp.819-838, 1975.
[23] Yao﹐J. T. P.﹐"Concept of Structural Control"﹐Journal of the Structural Division﹐ASCE﹐Vol.98﹐No.ST7﹐pp. 1567-1574, July, 1972.
[24] 國家地震工程研究中心簡訊,第二十八期,1998年12月。
[25] 鍾立來、黃震興,"地震工程之地震模擬振動臺試驗",中華民國結構工程學會﹐,結構工程,第十期,第二卷,第9∼15頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔