跳到主要內容

臺灣博碩士論文加值系統

(44.200.23.133) 您好!臺灣時間:2024/03/28 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡育芝
研究生(外文):Yu Chih Tsai
論文名稱:管型薄膜超過濾系統最佳傾斜角度之探討
論文名稱(外文):Investigation on the Optimal Inclination Angle for the Tubular Membrane Ultrafiltration
指導教授:鄭東文
指導教授(外文):T. W. Cheng
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:97
中文關鍵詞:超過濾濾速提升管式薄膜傾斜角度兩相流動
外文關鍵詞:UltrafiltrationFlux enhancementTubular MembraneInclined angleTwo phase flow
相關次數:
  • 被引用被引用:3
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討傾斜式掃流薄膜超過濾系統中,在不同操作條件(氣體流速,液體流速,進料濃度,透膜壓差)下,改變傾斜角度對濾速的影響。實驗系統為管型無機薄膜超過濾模組,測試之巨分子溶液為dextran T500之水溶液。
在單一液相超過濾系統中,改變傾斜角度對於超過濾濾速的影響並不大,而在氣液兩相超過濾系統中,改變傾斜角度對於濾速有較顯著的提升。實驗結果發現,濾速大小與傾斜角度關係,依序為45度,60度,30度,90度(垂直)及0度(水平)。在低液體流速,高氣體流速,高進料濃度或高透膜壓差下,改變傾斜角度,濾速值有較明顯之變化。再者,經由對傾斜角度做較小角度之調整,發覺當傾斜角度為50度時,其濾速實驗值最大,顯示傾斜超過濾系統中,有一最佳之傾斜角度。
The influence of inclination angle on the permeate flux of an inclined ultrafiltration system was investigated based on various operating parameters (liquid velocities, gas velocities, feed concentrations and transmembrane pressures). The experiments were carried out in a tubular membrane module by using dextran T500 aqueous solution as the tested solution.
The experimental results show that in the liquid-phase ultrafiltration system, a weak dependence of the permeate flux on the change of inclination angle was observed. However, the influence of inclination angle on the flux of gas-liquid two-phase ultrafiltration system is significant. The value of permeate flux decreases in line with the inclination angle of 45°, 60°, 30°, 90°(vertical), and 0° (horizontal). In the condition of lower liquid velocity, higher gas velocity, higher feed concentration or higher transmembrane pressure, the flux enhancement by changing the inclination angle is more significant. The experiments with a small angle tuning show that an optimal inclination exists in the inclined ultrafiltratin system and its value is about 50° in the present work.
目錄
中文摘要 Ⅲ
英文摘要 Ⅳ
圖索引 Ⅴ
表索引 Ⅶ
第一章 緒論 1
1.1 薄膜及薄膜分離程序 1
1.2 薄膜分離和序的優點和面臨的問題  2
1.3 薄膜之組成、結構與模組 3
1.4 薄膜過濾系統之種類與發展  5
1.5 本研究之目標 6
第二章 文獻回顧 9
2.1 超過濾在工業上的應用 9
2.2 掃流薄膜超過濾之特性 10
2.3 影響濾速之因素 12
2.4 提高濾速之方法 14
2.5 濾速分析模式 20
第三章 實驗裝置與方法 37
3.1 實驗裝置 37
3.2 實驗方法與步驟 38
3.3 操作條件 39
3.4 薄膜之阻隔性 40
第四章 結果與討論 43
4.1 單一液相超過濾系統 43
4.1.1 透膜壓差之影響 43
4.1.2 進料濃度之影響 43
4.1.3 液體速度之影響 44
4.2 氣液兩相超過濾系統 44
4.2.1 氣體流速之影響 44
4.2.2 液體流速之影響 47
4.2.3 進料濃度之影響 48
4.2.4 透膜壓差之影響 48
4.2.5 最佳傾斜角度 49
4.3 氣-液兩相傾斜角度實驗公式 50
4.4 綜合討論 52
第五章 結論 85
符號說明 87
參考文獻 90
圖索引
圖2.1薄膜掃流超過濾示意圖30
圖2.2各種操作參數與濾液通量之關係圖31
圖2.3提高濾速方法之流程圖32
圖2.4氣液兩相之流動形態33
圖2.5超過濾程序之各項阻力34
圖2.6膠層極化之濃度層之分佈圖35
圖2.7濃度極化層之分佈圖36
圖3.1管式薄膜超過濾之實驗流程裝置圖41
圖4.1透膜壓差的影響(單一液相)61
圖4.2進料濃度的影響(單一液相)62
圖4.3液體速度的影響(單一液相)63
圖4.4氣體速度的影響(a)(uL = 0.168m/s)64
圖4.5氣體速度的影響(b)(uL = 0.336m/s)65
圖4.6氣體速度的影響(c)(uL = 0.672m/s)66
圖4.7液體速度的影響(a)(ug = 0.04m/s)67
圖4.8液體速度的影響(b)(ug = 0.08m/s)68
圖4.9液體速度的影響(c)(ug = 0.16m/s)69
圖4.10進料濃度的影響 70
圖4.11透膜壓差的影響(a)(ug = 0.04m/s)71
圖4.12透膜壓差的影響(b)(ug = 0.16m/s)72
圖4.13最佳傾斜角度(a)(ug = 0.08m/s)73
圖4.14最佳傾斜角度(b)(ug = 0.12m/s)74
圖4.15求a、b 75
圖4.16求e、f 76
圖4.17實驗值和計算值的比較77
圖4.18實驗值和計算值的比較78
圖4.19實驗值和計算值的比較79
圖4.20實驗值和計算值的比較80
圖4.21實驗值和計算值的比較81
圖4.22實驗值和計算值的比較82
圖4.23實驗值和計算值的比較83
圖4.24實驗值和計算值的比較84
表索引
表1.1超過濾模組之比較(Winston H. and Sirkar) 8
表3.1管式薄膜模組性質表42
表4.1(a)濾速實驗數據(C=4g/l,uL=0.168m/s)54
表4.1(b)濾速實驗數據(C=4g/l,uL=0.336m/s)55
表4.1(c)濾速實驗數據(C=4g/l,uL=0.672m/s)56
表4.2(a)濾速實驗數據(C=16g/l,uL=0.168m/s)57
表4.2(b)濾速實驗數據(C=16g/l,uL=0.336m/s)58
表4.2(c)濾速實驗數據(C=16g/l,uL=0.672m/s)59
表4.3單一液相水平實驗值和計算值的比較60
Aimar, P., J. A. Howell, M. J. Clifton, and V. Sanchez, " Concentration Polarization Build-up in Hollow Fibers: A Method of Measurement and its Modelling in Ultrafiltration, " J. Membrane Sci., 59, 81-99 (1991).
Belfort, G., "Fluid Mechanics in Membrane filtration: Recent Developments," J. Membrane Sci., 40, 123-147 (1989).
Belfort, G., "Membrane Modules: Comparison of Different Configurations Using Fluid Mechanics," J. Membrane Sci., 35, 245-270 (1988).
Bellara, S. R., Z. F. Cui, and D. S. Pepper, "Gas Sparging to Enhance Permeate Flux in Ultrafiltration Using Hollow Fiber Membranes," J. Membrane Sci., 121, 175-184 (1996).
Blatt, W. F., A. Dravid, A. S. Michaels, and L. Nelsen, " Solute Polarization and Cake Formation in Membrane Ultrafiltration : Causes, Consequences, and Control Techniques," Membrane Science and Technology, p.47, J. E. Flinn, ed., Plenum Press, New York, (1970).
C. Cabassud, S. Laborie and J.M. Laine, "How slug Flow can improve ultrafiltration flux in organic hollow fibers," J. Membrane Sci., 128, 93-101. (1997).
Cheng, T. W., "A Study of the Hollow-Fiber Membrane Ultrafiltration," Ph. D. Dissertation, National Taiwan Univ., Taipei, Taiwan, R. O. C., (1992).
Cheryan, M., Ultrafiltration Handbook, Technomic Publishing, Lancaster, (1986).
Cui, Z. F , and K. I. T. Wright, "Gas-Liquid Two-Phase Crossflow Ultrafiltration of BSA and Dextran Solution," J. Membrane Sci., 90, 183-189 (1994).
Cui, Z. F , and K. I. T. Wright, "Flux Enhancements with Gas Sparging in Downwards Crossflow Ultrafiltration : Performance and Mechanism," J. Membrane Sci., 117, 109-116 (1996).
De Boer, R., and J. Hiddink, "Membrane Processes in the Dairy Industry, " Desalination, 35, 169 (1980).
Derzansky L. J., and W. N. Gill, "Mechanisms of Brane-Side Mass Transfer in a Horizontal Reverse Osmosis Tubular Membrane," AIChE J., 20, 751-761 (1974).
Fane, A. G., C. J. D. Fell, and A. Suki, "The Effect of pH and Ionic Environment on the Ultrafiltration of Protein Solutions with Retentive Membranes, " J. Membrane Sci., 16, 195-209 (1983).
Fell, C. J. D., K. J. Kim, V. Chem, D. E. Wiley, and A. G. Fane, "Factors Determining Flux and Rejection of Ultrafiltration Membranes, " Chem. Eng. Process. 27, 165-173 (1990).
Flory, P. J., Principles of Polymer Chemistry, Counill Univ. Press, Ithaca, 279 (1953).
Gekas, V., and B. Hallstrom, "Mass Transfer in the Membrane Concentration Polarization Layer Under Turbulent Cross Flow: I. Critical Literature Review and Adaptation of Existing Sherwood Correlations to Membrane Operations," J. Membrane Sci., 30, 153-170 (1987).
Gill, W. N., D. E. Wiley, C. J. D. Fell, and A. G. Fane, " Effect of Viscosity on Concentration Polarization in Ultrafiltration, " AIChE J., 34, 1563-1567 (1988).
Gomez-Gotor, A., P. Susial, A. Guerra, and B. Ibarra, "Experimental Data and Behavior of Starch/Water Solution with an Ultrafiltration Module," Sep. Sci. Technol., 31, 173-188 (1996).
Gupta, B. B., J. A. Howell, D. Wu, and R. W. Field, "A Helical Baffle for Cross-Flow Microfiltration," J. Membrane Sci., 99, 31-42 (1995).
Gupta, B. B., P. Blanpain, and M. Y. Jaffrin, "Permeate Flux Enhancement by Pressuse and Flow Pulsation in Microfiltration with Mineral Membranes," J. Membrane Sci., 70, 257-266 (1992).
Hewitt, G. F., and N. S. Hall-Taylor, Annular Two-Phase Flow, Pergamon Press (1970).
Ilias, S., and R. Govind, "A Study on Concentration Polarization in Ultrafiltration," Sep. Sci. Technol., 28, 361-381 (1993).
J. H. Wu., "A Study on the Inclined Gas-Liquid Two Phase Tubular Membrane Ultrafiltration System", M. D. Dissertation , Tamkang Univ., Tamsui, Taipei 251 Taiwan.
Ju, Y.H., "The Effects of Air slug on Pularization in Tangential Flow Membrane Filtration," Proceedings Symposium on Transport Phenomena and Applications, Taipei, 205-209 (1995).
Kim, B. S., H. N. Chang, "Effects of Periodic Backflushing on Ultrafiltration Performance," Bioseparation, 2, 23 (1991).
Kozinski, A. A., and E. N. Lightfoot, "Protein Ultrafiltration: A Greneral Example of Boundary Layer Filtration, " AIChE J., 18, 1030-1040 (1972).
Kroner, K. H., and V. Nissinen, "Dynamic Filtration of Microbial Suspensions Using an Axially Rotating Filter," J. Membrane Sci., 36, 85-100 (1988).
Lee, C. K., W. G. Chang, and Y. H. Ju, "Air Slugs Entrapped Cross-Flow Filtration of Bacterial Suspensions," Biotechnol. Bioeng., 41,525-530 (1993).
Lee, H. L., and E. N. Lightfoot,"Boundary-Layer Skimming: Calculational Curiosity or Promising Process?," AIChE, J., 20, 335-339 (1974).
Mercier, M., C. Fonade, and C. Lafforgue-Delorme, "Influence of The Flow Regime on the Efficiency of A Gas-Liquid Two-Phase Medium Filtration," Biotechnol. Techniques, 9, 853-858 (1995).
Mercier, M., C. Fonade, and C. Lafforgue-Delorme, "How slug Flow can enhance the ultrafiltration flux in mineral tubular membrance," J. Membrane Sci., 128, 103-113. (1997).
Millward, H. R., B. J. Bellhouse, and G. Walker, "Screw-Thread Flow Promoters: An Experimental Study of Ultrafiltration and Microfiltration Performance," J. Membrane Sci., 106, 269-279 (1995).
Mulder, M., Basic Principles of Membrane Technology, Kluwer Academic Press, (1991).
Nakao, S., T. Nomura, and S. Kimura, "Characteristics of Macromolecular Gel Layer Formed on Ultrafiltration Tubular Membrane, " AIChE J., 25, 615-622 (1979).
Niemi, H., and S. Polosaai, "Calculation of Permeate flux and Rejection in Simulation of ULtrafiltration and Reverse Osmosis Processes," J. Membrane Sci., 84, 123-137 (1993).
Ogston, A. G., and B. N. Preston, "The Molecular Compression of Dextran," Biochem. J., 183,1 (1979).
Peskin, A. P., M. K. Ko, and J. J. Pellegrino, "Three Layer Membrane Model for Characterizing Ultrafiltration Membranes, " J. Membrane Sci., 60, 195-206 (1991).
Porter, M. C., "Concentration Polarization with Membrane Ultrafiltration, " Ind. Eng. Chem. Prod. Res. Develop., 11, 234-248 (1972a).
Porter, M. C., "Ultrafiltration of Colloidal Suspensions, " AIChE Symp. Ser., 68, 21 (1972b).
Porter, M. C., "Membrane Filtration, Handbook of Separation Techniques for Chemical Engineer, Sec. 2.1, P. A. Schweitzer, ed., McGraw-Hill, New York, (1979).
Schulz, G., and S. Ripperger, "Concentration Polarization In Cross-flow Microfiltration, " J. Membrane Sci., 40, 173-187 (1989).
Sherwood, T. K., P. L. T. Brian, R. E. Fisher, and L. Dresner, "Salt Concentration at Phase Boundaries in Desalination by Reverse Osmosis, " I & EC Fundam., 4, 113-118 (1965).
Taitel, Y., D. Bornea, and A. E. Dukler, "Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes," AIChE J., 26, 345-354 (1980).
T. W. Cheng Yeh, H. M., and, C.T. Gau"Resistance Analyses for Ultrafiltration in Tubular Membrane Module, " Sep. Sci. Technol., 32,2623-2640 (1997).
T. W. Cheng, Yeh, H. M., and, J.H. Wu, "Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membranc module," J. Membrane Sci., 41, 1-12 (1999).
Van Der Weal, M. J., and I. G. Racz, "Mass Transfer in Corrugated-Plate Membrane Modules. 1. Hyperfiltration Experiments," J. Membrane Sci., 40, 243-260 (1989a).
Wang, S. S., "Effect of Solution Viscosity on Ultrafiltration," J. membrane Sci., 39, 187 (1988).
Winzeler H. B., and G. Belfort, "Enhanced Performance for Pressure-Driven Membrane Processes: The Argument for Fluid Instabilities," J. Membrane Sci., 80, 35-47 (1993).
Yang, Z. C., "The Effects of Air Slug on Polarization in Tangential Flow Membrane Filtration," M. S. Dissertation, National Taiwan Institute of Technology, Taipei, Taiwan, R.O.C., (1994).
Yeh, H. M., and T. W. Cheng, "Resistance-in-Series for Membrane Ultrafiltration in Hollow-Fibers of Tube-and-Shell Arrangement, " Sep. Sci. Technol., 28,1341-1355 (1993a).
Yeh, H. M., and T. W. Cheng, "Osmotic-Pressure Model with Permeability Analysis for Ultrafiltration in Hollow-Fiber Membrane Modules, " Sep. Technol., 3, 91-98 (1993b).
Yeh, H. M., and T. W. Cheng, "Concentration Polarization Model for Hollow-Fiber Membrane Ultrafiltration," Sep. Sci. Technol., 29, 497-512 (1994).
Yeh, H. M., "Modified Gel-Polarization Model for Ultrafiltration in Hollow-Fiber Membrane Modules," Sep. Sci. Technol., 31, 201-211 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top