(3.231.29.122) 您好!臺灣時間:2021/02/26 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱元宏
研究生(外文):Chiou Yuan-Horng
論文名稱:自調式比例導引律與現有比例導引律之比較
論文名稱(外文):A Comparsion of New and Existing Proportional Navigation Guidance Laws
指導教授:田豐田豐引用關係
指導教授(外文):Tyan Feng
學位類別:碩士
校院名稱:淡江大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:87
語文別:中文
論文頁數:79
中文關鍵詞:比例導引律偏離角自調式比例導引律
外文關鍵詞:proportional navigationoff-boresight
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在探討比例導引律對飛彈性能的影響。在飛彈終端導引系統當中,比例導引律早已被廣泛使用,然至今仍有許多與其相關的論文陸續發表中,有關的比例導引律實在不勝枚舉,故本文在此僅舉七種導引律來比較,分別為純比例導引律、終端導引律、補償式導引律、真比例導引律、廣義式導引律、理想比例導引律以及強健性導引律等,其中性能比較包括擊靶時間、加速度需求和能量消耗;進一步作者提出自調式比例導引律,一般導航係數介於3~6之間,由數值模擬結果可得知,若在尾追時取6則對飛彈加速度和能量需求會較小,但在側擊時若取相同導航係數值,則對飛彈加速度和能量需求反而會增加,相對就需調小導航係數值來做改善;因此令導航係數值為一常數值時,並不能適時的調整導引律對飛彈性能的需求,故我們希望藉由自調式比例導引律,來改善純比例導引律對飛彈性能的要求。
接著偏離角條件限制下之導引性能分析,此章我們假設所用的紅外線尋標器,在飛彈速度方向與視線角方向夾角小於某限制角度時,尋標器會無法穩定追蹤目標,故本文針對此一實際問題,提出保持偏離角為定值的偏角追逐法,並配合比例導引律來克服它,而且進一步討論此方法對飛彈性能的影響。

The purpose of this thesis is to investigate the influence on performance of the proportional navigation missile guidance law. In the terminal guidance system, proportional navigation guidance law has been implemented for years. Various guidance laws were proposed in literatures in the past thirty years, for example, pure proportional navigation, true proporti-onal navigation, optimal proportional navigation and generaliz-ed proportional navigation,…,etc.
At first, we try to evaluate various performance indces among these guidance laws, like acceleration command, energy and time-to-go. Next a heuristic adaptive proportional naviga-tion guid-ance law was suggested through numerical experiences. Numerical examples showed that by letting proportional coefficient be a constant is not a good choice in general.Some literatures used optimal control method to obtain an optimal constant proportional coefficient, however the information requir-ed is more than just line of sight angle, in addition the computation load is heavy. To overcome these severe drawb-acks, a heuristic adaptive proportional navigation guidance law is suggested. Although this method was not derived through a rigorous way. However the results of numerical analysis indicate that this method gives a satisfactory missile acceleration history and utilizes proper energy to intercept target.
Finally, we developed a new guidance law which is used under the constraint of off-boresight angle, which usually occurs in a seeker tracking loop. Numerical examples showed that proposed guidance law provides a strategy to accommodate the above mentioned constraint at the cost of consuming more energy and flight time.

中文摘要……………...……………………………………….I
英文摘要…………………………………………………….III
目 錄V
圖 目 錄VIII
表 目 錄XII
符 號 說 明XIV
第一章 緒論1
1.1比例導引律之回顧與比較1
1.2偏離角限制條件下之導引性能分析2
1.3本文結構3
第二章 比例導引律之比較4
2.1前言4
2.2比例導引律介紹5
2.2.1 第一類導引律(PPN,TPG,CPN)5
2.2.2 第二類導引律(TPN,GPN)7
2.2.3 第三類導引律9
2.3自調式比例導引律10
2.3.1自調式比例導引律原理11
2.4性能參數13
2.5數值模擬分析14
2.6結論40
第三章 在偏離角條件限制下之導引性能分析42
3.1前言42
3.2保持偏離角為定值原理43
3.2.1原理說明43
3.2.2理論推導44
3.3性能參數49
3.4數值模擬50
3.5結論63
第四章 結論65
附錄A 最佳化純比例導引律67
A.1純比例導引律最佳化敘述68
A.2最佳化純比例導引律70
A.3最佳化純比例導引律之數值法74
參考文獻76

[1] Murtaugh, S. A., and Criel, H. E.,“Fundamemtal of proportional navigation,”IEEE Spectrum, 3, 6, Dec., 1966, pp. 75-85.
[2] Guelman, M.,“A qualitative study of proportional navigation,”IEEE Trans on Aerospace and Electronic Systems, AES-7, 4, July, 1971, pp. 337-343.
[3] Guelman, M.,“Proportional navigation with a maneuvering target,”IEEE Transn on Aerospace and Electronic Systems, AES-8, 3, May, 1972, pp. 364-371.
[4] Guelman, M.,“Missile acceleration in proportional navigation,”IEEE Trans on Aerospace and Electronic Systems, AES-9, 3, May, 1973, pp. 462-463.
[5] Becker, K.,“Closed-form solution of pure proportional navigation,”IEEE Trans on Aerospace and Electronic Systems, AES-26, 3, May, 1990, pp. 562-533.
[6] Tetsuya T., Nguyen X. Vinh, and Pierre T.Kabamba,“Analytical solution of missile terminal guidance,”Journal of guidance, Control and Dynamics, 21, 2, Mar.-Apr., 1992, pp. 1161-1165.
[7] 袁平甲, “比例導航導引分析,” 中山科學研究院內部研究報告.
[8] Guelman, M.,“The closed-from solution of true proportional navigation,”IEEE Trans on Aerospace and Electronic Systems, AES-12, 4, July, 1976, pp. 472-482.
[9] Cochran, Jr., J. E., No, T. S., and Thaxton, D. G.,“Analytic solutions to a guidance problem, ”Journal of Guidance, Conrtrol, and Dynamics, 14, 1, Jan., 1991,pp. 117-122.
[10] Yuan, P. J., and Chern, J. S.,“Solution of true proportional navigation for manuvering and non-manuvering targets, ” Journal of Guidance, Conrtrol, and Dynamics, 15, 1, Jan.-Feb., 1992, pp. 268-271.
[11] Yuan, P. J., and Chern, J. S.,“Analytic study of baised proportional navigation, ”Journal of Guidance, Conrtrol, and Dynamics, 15, 1, Jan.-Feb., 1992, pp. 185-190.
[12] Yang, C. D., Yeh, F. B., and Chen, J. H.,“The closed-from solution of generalized proportional navigation,”Journal of Guidance, Conrtrol, and Dynamics, 10, 2, 1987, pp. 216-218.
[13] Yang, C. D., Hsiao, F. B., and Yeh, F. B.,“Generalized guidance law for homing missiles,”IEEE Trans. on Aerospace and Electronic Systems, AES-25, 2, Mar., 1989, pp. 197-212.
[14] Yuan, P. J., and Hsu, S. C.,“The exact closed-from solution of generalized proportional navigation,”Journal of guidance, Control and Dynamics, 16, 5, 1993, pp. 963-966.
[15] Yuan, P. J., and Chern, J. S.,“Solutions of generalized proportional navigation with Maneuvering and nonmanuvering targets,”IEEE Transns on Aerospace and Electronic Systems, AES-31, 1, Jan., 1995, pp. 1-6.
[16] Yuan, P. J., and Chern, J. S.,“Ideal proportional navigation,”Journal of guidance, Control and Dynamics, 15, 5, 1992, pp. 1161-1165.
[17] 楊憲東,葉芳柏,“線性和非線性 控制理論 Game Theoretic Approach Theoretic Approach,”全華圖書, 1997.
[18] Merrill, G.,“Principles of Guided Missile Design,”Nostrand New York, 1960.
[19] Guelman, M., “Optimal Guidance Law in the Plane,” Journal of Guidance, Control, and Dynamics, Vol. 7, No. 4, 1984, pp. 471-476.
[20] Shukla, U. S. and Mahapatra, P. R., “Optimization of Biased Proportional Navigation,” IEEE Trans. On Aerospace and Electronic Systems, AES. 25, No. 1,1989, pp. 73-79.
[21] Hull, D. G., Speyer, J. L., amd Burris, D. B.,“Linear-Quadratic Guidance Law for Dual Control of Homing Missiles,” Journal of Guidnace,Control, and Dynamics, Vol. 13, No. 1, 1990, pp. 137-144.
[22] Asher, Robert. B. and Matuszewski, John. P., “Optimal Guidance with Maneuvering Targets,” Journal of Spacecraft and Rockets, Vol. 11, No. 3, 1973, pp. 204-206.
[23] Babu, K. R., Sarma, I. G., and Swamy, K. N., “Switch Bias Proportional Navigation for Homing Guidance Against Highly Maneuvering Targets,” Journal of Guidance, Control, and Dynamics, Vol 17, No. 6, 1994, pp. 1357-1363.
[24] Yuan, C. D. and Hsu, S. C., “Optimal Guidance of Proportional Navigation,” IEEE Trans. Aerospace and Electronic Systems, AES-33, No. 3, 1997, pp. 31-36.
[25] Yang, C. D. and Yang, C. C.,“Optimal Pure Proportional for Maneuvering Targets,” IEEE Trans. On Aerospace and Electronic Systems, AES-33, No. 3, 1997, pp. 949-957.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔