跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方江渡
研究生(外文):Jiang-Duh Fang
論文名稱:智慧型光電邏輯閘的設計與應用
論文名稱(外文):Design and Application of Smart Photonic Logic Gates
指導教授:張文清
指導教授(外文):Wen-Ching Chang
學位類別:碩士
校院名稱:淡江大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:152
中文關鍵詞:智慧型光電邏輯閘方向耦合器鈮酸鋰光電轉換器切換電壓摻鉺光纖放大器串音相位延滯
外文關鍵詞:Smart Photonic Logic GatesDirectional CouplerLithium NiobateOptoelectronic DeviceSwitching VoltageErbium Doped Fiber AmplifierCrosstalkPhase Retardation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:567
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將首次提出由積體光波導方向耦合器、光電元件、摻鉺光纖放大器和延遲線所組成新型的智慧型光電邏輯閘。本論文中之基本光電邏輯閘元件包含有:NOT閘,AND、OR、XOR閘,與傳統的光電邏輯閘比較,具有簡單、高速和線性元件等特點,並可發展出更多應用形式之多輸入邏輯閘。例如:階梯型多輸入n對1的AND閘與直接型多輸入n對1的OR閘。本論文除了深入探討智慧型光電邏輯閘與一般邏輯閘的不同特性之外,亦將探討智慧型光電邏輯閘之各項特性,諸如:切換電壓、元件參數、串音、操作頻率、輸出穩態時間、振盪頻率等。
本論文首先利用鈮酸鋰材料設計出光電邏輯閘,主要探討其不穩態時間、導光模態、光程差所產生的極化旋轉不對稱等問題。至於本光電邏輯閘與現有一般光電或半導體元件間之混成或積體化等問題也將是我們評估之重點。另一方面,我們將所有之智慧型光電邏輯閘組件以各類半導體材料取代,除了矽之外,也包括砷化鎵、磷化銦、砷化鋁鎵等材料,相信就邏輯閘之基本特性以及設計觀念也將與鈮酸鋰不同。
在掌握智慧型光電邏輯閘之重要特性及設計觀念後,我們將研發出許多應用的電路,例如:環式振盪器、SR、JK、D型、T型正反器以及移位暫存器等。並更進而結合積體光學之技術,創造出新的電路。更者,設計出之各式電路其操作頻率與最大串接級數目等特性限制之重要探討,將以工作站配合專業軟體進行模擬,如二維、三維波導折射率模型分析,配合交互方向隱藏法等分析工具驗證其正確性。
本智慧型光電邏輯閘由於可適用於多輸入運算,故可應用在WDM網路上。除了在WDM網路上執行所有的基本運算之外,更朝向加強資料的正確性努力。如CRC-32錯誤更正的研究,以硬體的方式完成Jitter detection技術,這將是光電元件設計在系統應用上之一大突破。最後朝向設計波長轉換器,可有效的讓波長再利用,大為提高光纖網路的效能。再配合陣列波導式WDM模擬,三維波導折射率分析,將可瞭解智慧型光電邏輯閘在WDM網路之行為與特性。相信對於國內寬頻光電通信網路中元件設計與技術之發展將有極大助益。

A novel smart photonic logic gate system, including NOT, AND, OR, XOR gates, direct type OR with multiple inputs has been proposed for the first time. It takes many advantages of the linear device operation, facility of the multiple inputs, and being easy to realize logic functions as compared to the conventional photonic logic gate systems. The main components on these smart photonic logic gates includes the integrated optical waveguide directional couplers, optoelectronic (OE) devices, erbium-doped fiber amplifiers (EDFAs), 50/50 optical couplers, delay lines, and a built-in DFB laser. The design consideration of the waveguide directional couplers, such as switching voltage, electrode gap, coupling length, operating wavelength, would be studied in detail in this thesis.
In chapter 1, the substrate materials of directional couplers would be concentrated on LiNbO3 technologies because of its low propagation loss and high electrooptic coefficients. In chapter 2, the components of smart photonic logic gates would be designed and then integrated by using semiconductor technologies such as gallium arsenide, indium phosphide. The operating characteristics of the optoelectronic devices which include UTC-PD, PIN/HBT, and MSM-PD, would be also investigated in order to integrate the whole components in the photonic logic gates.
In chapter 3, the characteristics of the photonic logic gate systems, such as guided mode (TE or TM), operating wavelength, such as switching voltages, propagation and dielectric losses, crosstalk, will be investigated by using the two and three dimensional beam propagation method (BPM).
In chapter 4, the operation limitation of the smart photonic logic gates, such as operating frequency, the numbers of maximum and optimal inputs, the max numbers of cascade stages, and device dimension, would be also considered and proved to be informative. Moreover, the architecture and their characteristics of the smart photonic ring oscillator, left and right shift register, SR, JK, D type, and T type flip-flop would be studied.
In chapter 5, the major work would be focused on the application of the smart photonic logic gates on the WDM network. For example, the jitter detection on hardware technology and CRC-32 data correction are expected to increase the performance in the WDM network. In the near future, it is believed that this smart photonic logic gates system should be of great interest in the design of wideband optical communication network.

Chapter 1 Characteristics of Metal Diffused Lithium NiobateOptical Waveguides 1

1.1 Introduction 1
1.2 Influence of Metal-indiffusion on Lithium Niobate 4
1.2.1 Characteristics of LiNbO3 Crystal 4
1.2.2 Fabrication Techniques of Lithium Niobate Optical Waveguides 5
1.2.3 Influence of Metal-indiffusion on Lithium Niobate 7
1.3 Linear Electrooptic Effect 9
1.3.1 Propagation of Light in Anisotropic Crystal 9
1.3.2 The Index Ellipsoid and Birefringence 10
1.3.3 Electrooptic Effect 11
1.4 Coupling-Mode Theory of Directional Coupler 16
1.5 Preferred Electrode Arrangements 19
1.5.1 Crystal Orientation versus Electrode Arrangements 19
1.5.2 Switched Directional Coupler with Alternating Δβ 19
1.6 Device Fabrication 21
1.6.1 Wafer Cleaning 21
1.6.2 Photolithography 22
1.6.3 Metal Indiffusion 23
1.6.4 Polishing Process 24
1.6.5 Electrode Pattern 26
References 27
Figures and Tables 34

Chapter 2 Design of Smart Photonic Logic Gates 39

2.1 Introduction 39
2.2 Smart Photonic Logic Gates Configurations 43
2.3 Directional Coupler 46
2.4 Optoelectronic Devices 50
2.5 Comparison with Six Optoelectronic Devices 53
2.6 Numerical Analysis of Directional Coupler 54
2.7 Conclusion 57
References 58
Figures and Tables 62

Chapter 3 Application of Smart Photonic Logic Gates - Ring Oscillator and Flip-Flop 80

3.1 Introduction 80
3.2 Smart Photonic Ring Oscillator 82
3.3 Smart Photonic SR Flip-Flop 88
3.4 Conclusion 93
References 95
Figures and Tables 97

Chapter 4 Limitation of Characteristics on Smart Photonic Logic Gates 105

4.1 Introduction 105
4.2 Device Structure and Layout 107
4.3 Design Consideration of Multi-input Logic Gates 110
4.4 Limitation of Cascade Stages 113
4.5 Conclusion 114
References 115
Figures and Tables 117

Chapter 5 Future Work 123

5.1 Smart Photonic Logic Gates Using Semiconductor Techniques 124
5.2 Application of Smart Potonic Logic Gate systems on WDM 126
References 128

Chapter 6 Conclusions 130
Appendix A An Efficient Multicast Protocol for Multichannel Dual Bus Network 133

Chapter 1
References

[1] F. Delorme, S. Grosmaire, A. Gloukhian, and A. Ougazzaden, "High power operation of widely tunable 1.55mm distributed Bragg reflector laser," Electron. Lett., vol. 33, no. 3, pp. 210-211, 1997.

[2] S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical intensity modulation to 40GHz using a waveguide electro-optic switch," Appl. Phys. Lett., vol. 50, no. 23, pp. 1631-1633, 1987.

[3] R. V. Schmidt and P. S. Cross, "Efficient optical waveguide switch/amplitude modulator," Opt. Lett., vol. 2, no. 2, pp. 45-47, 1978.

[4] M. Kondo, Y. Ohta, Y. Tanisawa, T. Aoyama, and R. Ishikawa, "Low-drive-voltage and low-loss polarisation-independent LiNBO3 optical waveguide switches," Electron. Lett., vol. 23, no. 21, pp. 1167-1169, 1987.

[5] A. Matoba, H. Okayama, R. Shibuya, and T. Ishida, "Low-drive-voltage 8’8 Ti:LiNbO3 switch with simplified tree structure," Electron. Lett., vol. 25, no. 2, pp. 165-166, 1989.

[6] P. Granestrand, B. Stoltz, L. Thylen, K. Bergavall, W. Dolaissen, H. Heinrich, and D. Hoffmann, "Strictly nonblocking 8’8 integrated optical switch matrix," Electron. Lett., vol. 22, no. 15, pp. 816-818, 1986.

[7] J. J. Lin, "Design and fabrication of the directional couplers in integrated optics," Master Thesis, NTU, 1990 (in R.O.C.).

[8] H. C. Hou, "Fabrication of directional coupler by nickel indiffusion lithium niobate ridge optical waveguide," Master Thesis, TKU, 1997 (in R.O.C.).

[9] K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator," Electron. Lett., vol. 34, no. 7, pp. 661-663, 1998.

[10] K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, "New travelling-wave electrode Mach-Zehnder optical modulator with 20GHz bandwidth and 4.7V driving voltage at 1.52mm wavelength," Electron. Lett., vol. 25, no. 20, pp. 1382-1383, 1989.

[11] K. Noguchi, H. Miyazawa, and O. Mitomi, ?GHz broadband Ti:LiNbO3 optical modulator with ridge structure," Electron. Lett., vol. 30, no. 12, pp. 949-950, 1994.

[12] K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, "A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5mm wavelength," IEEE Photon. Technol. Lett., vol. 1, no. 2, pp. 33-34, 1989.

[13] K. Kawano, K. Noguchi, T. Kitoh, and H. Miyazawa, "A finite element method (FEM) analysis of a shielded velocity-matched Ti:LiNbO3 optical modulator," IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 919-921, 1991.

[14] K. Noguchi, K. Kawano, T. Nozawa, and T. Suzuki, "A Ti:LiNbO3 optical intensity modulator with more than 20GHz bandwidth and 5.2V driving voltage," IEEE Photon. Technol. Lett., vol. 3, no. 4, pp. 333-335, 1991.

[15] G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. Mcelhanon, and A. S. Greenblatt, ?GHz low half-wave voltage Ti:LiNbO3 intensity modulator," Electron. Lett., vol. 28, no. 9, pp. 826-827, 1992.

[16] D. W. Dolfi and T. R. Ranganath, ?GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section," Electron. Lett., vol. 28, no. 13, pp. 1197-1198, 1992.

[17] K. Noguchi and K. Kawano, "Proposal for Ti:LiNbO3 optical modulator with modulation bandwidth of more than 150GHz," Electron. Lett., vol. 28, no. 18, pp. 1759-1761, 1992.

[18] R. S. Cheng, "Lithium niobate ridge optical waveguide devices fabricated by wet etching," PhD Thesis, NTU, 1996 (in R.O.C.).

[19] J. L. Sheu, "Fabrication of nickel indiffusion lithium niobate ridge waveguide modulators," Master Thesis, TKU, 1997 (in R.O.C.).

[20] C. Y. Sue, "Fabrication of Ni:LiNbO3 ridge optical waveguide Mach-Zehnder modulators," Master Thesis, TKU, 1998 (in R.O.C.).

[21] O. Mikami, "LiNbO3 coupled-waveguided TE/TM mode splitter," App. Phys. Lett., vol. 36, no. 7, pp. 491-493, 1980.

[22] P. K. Wei, W. S. Wang, "A TE-TM mode splitter on lithium niobate Using Ti, Ni, and MgO diffusions," IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 245-248, 1994.

[23] H. Maruyama, M. Haruna, and H. Nishihara, "TE-TM mode splitter using directional coupling between heterogeneous waveguides in LiNbO3," J. Lightwave Technol., vol. 13, no. 7, pp. 1550-1554, 1995.

[24] Y. P. Liao, "Fabrication of metal diffused TE/TM mode splitter," PhD Thesis, NTU, 1996 (in R.O.C.).

[25] R. C. Alferness and L. L. Buhl, "Long-wavelength Ti:LiNbO3 waveguide electro-optic TE?TM convertor," Electron. Lett., vol. 19, no. 2, pp. 40-41, 1983.

[26] R. C. Alferness and R. V. Schmidt, "Tunable optical waveguide directional coupler filter," App. Phys. Lett., vol. 33, no. 2, pp. 161-163, 1978.

[27] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996.
[28] R. G. Hunsperger, "Integrated optics: theory and technology," Springer-Verlag 1991.

[29] M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc., vol. 135, no. 2, pp. 85-91, 1988.

[30] P. K. Wei, "Fabrication and applications of metal diffused lithium niobate optical waveguides," PhD Thesis, NTU, 1994 (in R.O.C.).

[31] T. D. Suen, "Novel methods for the fabrication of lithium optical waveguides," Master Thesis, NTU, 1993 (in R.O.C.).

[32] J. H. Yang, "Fabrication of zinc-nickel co-diffused waveguide in lithium niobate," Master Thesis, NTU, 1996 (in R.O.C.).

[33] P. K. Wei and W. S. Wang, "Fabrication of lithium niobate optical channel waveguides by nickel indiffusion," Microwave Opt. Technol. Lett., vol. 7, no. 5, pp. 219-221, 1994.

[34] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, "Nickel-diffused lithium niobate optical waveguide with process-dependent polarization," IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.

[35] W. L. Chen, D. J. Chen, and W. S. Wang, "Fabrication of LiTaO3 optical waveguides by Ni diffusion below the curie temperature," IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 203-205, 1995.

[36] W. L. Chen, R. S. Chen, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet etching," IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1318-1320, 1995.

[37] R. S. Chen, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchange wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1282-1284, 1995.

[38] O. Eknoyan, D. W. Yoon, and H. F. Taylor, "Low-loss waveguides in lithium tantalate by vapor diffusion," Appl. Phys. Lett., vol. 51, no. 6, pp. 384-386, 1987.

[39] D. W. Yoon and O. Eknoyan, "Characterization of vapor diffused Zn:LiTaO3 optical waveguides," J. Lightwave Technol., vol. 6, no. 6, pp. 877-879, 1988.

[40] W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S, Feigelson, "Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO: lithium niobate," J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, 1992.

[41] B. Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett., vol. 66, no. 12, pp. 1449-1451, 1995.

[42] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, "Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides," IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 872-875, 1992.

[43] T. R. Ranganath and S. Wang, "Suppression of Li2O out-diffusion from Ti diffused LiNbO3 optical waveguides," Appl. Phys. Lett., vol. 30, no. 8, pp. 376-379, 1977.

[44] K. Nakamura, H. Ando, and H. Shimizu, "Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment," Appl. Phys. Lett., vol. 50, pp. 1413-1414, 1987.

[45] K. Nakamura and H. Shimizu, "Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3," Appl. Phys. Lett., vol. 56, pp. 1535-1536, 1990.

[46] K. Yamamoto and T. Taniuchi, "Characterization of pyrophosphoric acid proton-exchanged waveguides in LiNbO3," J. Appl. Phys., vol. 70, pp. 6663-6668, 1991.

[47] M. Goodwin and C. Stewart, "Proton-exchanged optical waveguides in y-cut lithium niobate," Electron. Lett., vol. 19, no. 6, pp. 223-224, 1983.

[48] G. Tohmon, J. Ohya, K Yamamoto, and T. Taniuchi, "Generation of ultraviolet picosecond pulses by frequency-doubling of laser diode in proton-exchanged MgO:LiNbO3 waveguide," IEEE Photon. Technol. Lett., vol. 2, no. 9, pp. 629-631, 1990.

[49] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmber, "Wet etching of proton-exchanged lithium niobate?A novel processing technique," J. Lightwave Technol., vol. 10, no. 11, pp. 1606-1609, 1992.

[50] R. S. Cheng, T. J. Wang, and W. S. Wang, "Wet-etched ridge waveguides in y-cut lithium niobate," J. Lightwave Technol., vol. 15, no. 10, pp. 1880-1887, 1997.

[51] P. Jiang, F. Zhou, P. J. R. Laybourn, and R. M. De La Rue, "Buried optical waveguide polarizer by titanium indiffusion and proton-exchange in LiNbO3," IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 881-883, 1992.

[52] R. V. Schmidt and I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.

[53] W. C. Chang, "A study of planar multimode electro-optic switches," Master Thesis, NTU, 1987 (in R.O.C.).

[54] W. B. Leu, "Measurement of the optical coupling length and numerical analysis," Master Thesis, NTU, 1992 (in R.O.C.).

[55] M. C. Gabriel and N. O. Whitaker, "Measurement of optical waveguide coupling coefficients using multiple waveguide systems," J. Lightwave Technol., vol. 7, no. 9, pp. 1343-1350, 1989.

[56] H. Kogelnik, and R. V. Schmidt, "Switched directional couplers with alternating Db," IEEE J. Quantum Electron., vol. QE-12, no. 7, pp. 396-401, 1976.

[57] M. Papuchun, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler: Cobra," Appl. Phys. Lett., vol. 27, no, 5, pp. 289-291, 1975.

[58] R. V. Schmidt, and H. Kogelnik, "Electro-optically switched coupler with stepped Db reversal using Ti-diffused LiNbO3 waveguides," Appl. Phys. Lett., vol. 28, no. 9, pp. 503-506, 1976.

[59] H. Okayama, A. Matoba, R. Shibuya, and T. Ishida, "Optically biased LiNbO3 Db reversal directional coupler switch," Electron. Lett., vol. 23, no. 21, pp. 1145-1147, 1987.

[60] P. L. Liu, "LiNbO3 waveguide modulator with 1.2mm thick electrodes fabricated by lift-off technique," IEEE J. Quantum Electron., vol. QE-18, no. 10, pp. 1780-1782, 1982.

Chapter 2
References

[1] D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, "Degenerate wavelength operation of an ultrafast all-optical AND gate using four wave mixing in a semiconductor laser amplifier," Electron. Lett., vol. 30, no. 23, pp.1938-1940. 1994.

[2] L. F. Tiemeijer, "Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier," Appl. Phys. Lett., vol. 59, no. 5, pp.499-501, 1991.

[3] S. K. Kwong, G. A. Rakuljic, and A. Yariv, "Real time image subtraction and "exclusive or" operation using a self-pumped phase conjugate mirror," Appl. Phys. Lett., vol. 48, no. 3, pp. 201-203, 1986.

[4] Y. S. Qiu, H. Li, T. S. Lu, J. Zhuang, and X. C. Gao, "Optical logic operations with self-pumped phase-conjugation output in photorefractive materials," Opt. Commun., vol. 98, no.1, pp. 29-32, 1993.

[5] H. F. Yau, H. Y. Lee, and P. J. Wang, "Optical image-combiner OR gate and optical AND gate using beam fanning effect in BaTiO3 crystals," Opt. Eng., vol. 33, no. 12, pp. 4033-4036, 1994.

[6] H. Y. Lee, H. F. Yau, and N. J. Cheng, "Incoherent optical XOR logic gate and image subtractor with series self-pumped phase conjugators," Opt. Eng., vol. 37, no. 7, pp. 2156-2161, 1998.

[7] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996, pp. 546-563.

[8] Y. Ohno, S. Kishimoto, T. Mizutani, and T. Akeyoshi, "Logic gate for optical input using monostable-bistable transition of serially connected resonant tunnelling transistors," Electron. Lett., vol. 34, no. 3, pp. 250-251, 1998.

[9] K. L. Hall and K. A. Rauschenbach, ?-Gbit/s bitwise logic," Opt. Lett., vol. 23, no. 16, pp. 1271-1273, 1998.

[10] M. Kondo, Y. Ohta, Y. Tanisawa, T. Aoyama, and R. Ishikawa, "Low-drive-voltage and low-loss polarisation-independent LiNBO3 optical waveguide switches," Electron. Lett., vol. 23, no. 21, pp. 1167-1169, 1987.

[11] H. Kogelnik, and R. V. Schmidt, "Switched directional couplers with alternating Db," IEEE J. Quantum Electron., vol. QE-12, no. 7, pp. 396-401, 1976.

[12] M. Papuchun, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler: Cobra," Appl. Phys. Lett., vol. 27, no, 5, pp. 289-291, 1975.

[13] R. V. Schmidt, and H. Kogelnik, "Electro-optically switched coupler with stepped Db reversal using Ti-diffused LiNbO3 waveguides," Appl. Phys. Lett., vol. 28, no. 9, pp. 503-506, 1976.

[14] H. Okayama, A. Matoba, R. Shibuya, and T. Ishida, "Optically biased LiNbO3 Db reversal directional coupler switch," Electron. Lett., vol. 23, no. 21, pp. 1145-1147, 1987.

[15] R. V. Schmidt and P. S. Cross, "Efficient optical waveguide switch/amplitude modulator," Opt. Lett., vol. 2, no. 2, pp. 45-47, 1978.

[16] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996, pp. 541-543.

[17] S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical intensity modulation to 40GHz using a waveguide electro-optic switch," Appl. Phys. Lett., vol. 50, no. 23, pp. 1631-1633, 1987.

[18] K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator," Electron. Lett., vol. 34, no. 7, pp. 661-663, 1998.

[19] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996, pp. 182-217.

[20] Y. J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, "GaAs-based, 1.55mm high speed, high saturation power, low-temperature grown GaAs pin photodetector," Electron. Lett., vol. 34, no. 12, pp. 1253-1255, 1998.

[21] Y. Miyamoto, M. Yoneyama, K. Hagimoto, T. Ishibashi, and N. Shimizu, ?Gbit/s high sensitivity optical receiver with uni-travelling-carrier photodiode acting as decision IC driver," Electron. Lett., vol. 34, no. 2, pp. 214-215, 1998.

[22] K. Sano, K. Murata, T. Akeyoshi, N. Shimizu, T. Otsuji, M. Yamamoto, T. Ishibashi, and E. Sano, "Ultra-fast optoelectronic circuit using resonant tunnelling diodes and uni-travelling-carrier photodiode," Electron. Lett., vol. 34, no. 2, pp. 215-217, 1998.

[23] K. Murata, K. Sano, T. Akeyoshi, N. Shimizu, E. Sano, M. Yamamoto, and T. Ishibashi, "Optoelectronic clock recovery circuit using resonant tunnelling diode and uni-travelling-carrier photodiode," Electron. Lett., vol. 34, no. 14, pp. 1424-1425, 1998.

[24] M. Yoneyama, Y. Miyamoto, K. Hagimoto, N. Shimizu, T. Ishibashi, and K. Wakita, ?Gbit/s optical gate using optical modulator driven by uni-travelling carrier photodiode," Electron. Lett., vol. 34, no. 16, pp. 1607-1609, 1998.

[25] R. G. Decorby, R. I. Macdonald, A. J. P. Hnatiw, D. Boertjes, J. N. Mcmullin, F. Gouin and J. Noad, "Packaged array of eight MSM photodetectors with uniform 12GHz bandwidth," Electron. Lett., vol. 34, no. 4, pp. 400-401, 1998.

[26] E. Droge, E. H. Bottcher, D. Bimberg, O. Reimann, and R. Steingruber, ?GHz InGaAs metal-semiconductor-metal photodetectors for polarisation-insensitive operation," Electron. Lett., vol. 34, no. 14, pp. 1421-1422, 1998.

[27] T. Chau, L. Fan, D. T. K. Tong, S. Mathai, M. C. Wu, D. L. Sivco, and A. Y. Cho, "Long wavelength velocity-matched distributed photodetectors for RF fibre optic links," Electron. Lett., vol. 34, no. 14, pp. 1422-1424, 1998.

[28] Th. Engel, E. Droge, G. Unterborsch, E. H. Bottcher, and D. Bimberg, "Reactive matching of millimetre-wave photodetectors using coplanar waveguide technology," Electron. Lett., vol. 34, no. 17, pp. 1690-1691, 1998.

[29] K. Kasahara, J. Hayashi, K. Makita, K. Taguchi, A. Suzuki, H. Nomura, and S. Matushita, "Monolithically integrated In0.53Ga0.47As-PIN/InP-MISFET photo-receiver," Electron. Lett., vol. 20, no. 8, pp. 314-315, 1984.

[30] S. Hata, M. Ikeda, T. Amano, G. Motosugi, and K. Kurumada, "Planar InGaAs/InP PINFET fabricated by Be ion implantation," Electron. Lett., vol. 20, no. 22, pp. 947-948, 1984.

[31] J. C. Campbell, C. A. Burrus, A. G. Dentai, and K. Ogawa, "Small-area high-speed InP/InGaAs phototransistor," Appl. Phys. Lett., vol. 39, no. 10, pp. 820-821, 1981.

[32] R. Driad, P. Desrousseaux, A. M. Duchenois, F. Alexandre, and P. Launay, "Planar InGaP/GaAs HBTs for high speed optoelectronic circuit applications," Electron. Lett., vol. 33, no. 1, pp. 85-86, 1997.

Chapter 3
References

[1] J. D. Fang, W. C. Chang, Y. H. Lee, and M. Y. Hsuan, "Design of smart photonic logic gates," Submitted to Journal Lightwave Technology.

[2] A. A. S. Awwal and M. A. Karim, "Polarization-encoded optical shadow casting: design of a J-K flip-flop," Appl. Opt., vol. 27, no. 17, pp. 3719-3722, 1988.

[3] A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, "Symmetric self-electro-optic effect device: optical set-reset latch," Appl. Phys. Lett., vol. 52, no. 17, pp. 1419-1421, 1988.

[4] H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett., vol. 57, no. 17, pp. 1724-1726, 1990.

[5] K. Nakatsuhara, T. Mizumoto, R. Munakata, Y. Kigure, and Y. Naito, "All-optical set-reset operation in a distributed feedback GaInAsP waveguide," IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 78-80, 1998.

[6] A. P. Kanjamala and A. F. J. Levi, "Wavelength selective electro-optic flip-flop," Electron. Lett., vol. 34, no. 3, pp. 299-300, 1998.

[7] E. A. Swanson and S. R. Chinn, ?-GHz pulse train generation using soliton compression of a Mach-Zehnder modulator output," IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 114-116, 1995.

[8] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996.

[9] M. Papuchun, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler: Cobra," Appl. Phys. Lett., vol. 27, no, 5, pp. 289-291, 1975.

[10] K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator," Electron. Lett., vol. 34, no. 7, pp. 661-663, 1998.

[11] M. Kondo, Y. Ohta, Y. Tanisawa, T. Aoyama, and R. Ishikawa, "Low-drive-voltage and low-loss polarisation-independent LiNBO3 optical waveguide switches," Electron. Lett., vol. 23, no. 21, pp. 1167-1169, 1987.

[12] H. Porte, R. Ferriere, and J. P. Goedgebuer, "Integrated waveguide modulator using a LiNbO3 TE?TM convertor for electrooptic coherence modulation of light," J. Lightwave Technol., vol. 6, no. 6, pp. 892-897, 1988.

Chapter 4
References

[1] D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, "Degenerate wavelength operation of an ultrafast all-optical AND gate using four wave mixing in a semiconductor laser amplifier," Electron. Lett., vol. 30, no. 23, pp.1938-1940. 1994.

[2] S. K. Kwong, G. A. Rakuljic, and A. Yariv, "Real time image subtraction and "exclusive or" operation using a self-pumped phase conjugate mirror," Appl. Phys. Lett., vol. 48, no. 3, pp. 201-203, 1986.

[3] Y. S. Qiu, H. Li, T. S. Lu, J. Zhuang, and X. C. Gao, "Optical logic operations with self-pumped phase-conjugation output in photorefractive materials," Opt. Commun., vol. 98, no.1, pp. 29-32, 1993.

[4] H. F. Yau, H. Y. Lee, and P. J. Wang, "Optical image-combiner OR gate and optical AND gate using beam fanning effect in BaTiO3 crystals," Opt. Eng., vol. 33, no. 12, pp. 4033-4036, 1994.

[5] H. Y. Lee, H. F. Yau, and N. J. Cheng, "Incoherent optical XOR logic gate and image subtractor with series self-pumped phase conjugators," Opt. Eng., vol. 37, no. 7, pp. 2156-2161, 1998.

[6] Y. Ohno, S. Kishimoto, T. Mizutani, and T. Akeyoshi, "Logic gate for optical input using monostable-bistable transition of serially connected resonant tunnelling transistors," Electron. Lett., vol. 34, no. 3, pp. 250-251, 1998.

[7] K. L. Hall and K. A. Rauschenbach, ?-Gbit/s bitwise logic," Opt. Lett., vol. 23, no. 16, pp. 1271-1273, 1998.

[8] A. A. S. Awwal and M. A. Karim, "Polarization-encoded optical shadow casting: design of a J-K flip-flop," Appl. Opt., vol. 27, no. 17, pp. 3719-3722, 1988.

[9] A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, "Symmetric self-electro-optic effect device: optical set-reset latch," Appl. Phys. Lett., vol. 52, no. 17, pp. 1419-1421, 1988.

[10] H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett., vol. 57, no. 17, pp. 1724-1726, 1990.

[11] K. Nakatsuhara, T. Mizumoto, R. Munakata, Y. Kigure, and Y. Naito, "All-optical set-reset operation in a distributed feedback GaInAsP waveguide," IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 78-80, 1998.

[12] A. P. Kanjamala and A. F. J. Levi, "Wavelength selective electro-optic flip-flop," Electron. Lett., vol. 34, no. 3, pp. 299-300, 1998.

[13] J. D. Fang, W. C. Chang, Y. H. Lee, and M. Y. Hsuan, "Design of smart photonic logic gates," Submitted to Journal Lightwave Technology.

[14] H. B. Lin, "A study of optical waveguide bends and branches with low-loss and wide-angle characteristics," PhD Thesis, NTU, 1995 (in R.O.C.).

Chapter 5
References

[1] S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, "Channel optical waveguide directional," Appl. Phys. Lett., vol. 22, no. 2, pp. 46-47, 1973.

[2] J. C. Campbell, F. A. Bium, D. W. Shaw, and K. L. Lawley, "GaAs electro-optic directional-coupler switch," Appl. Phys. Lett., vol. 27, no. 4, pp. 202-204, 1975.

[3] M. Cada, R. C. Gauthier, B. E. Paton, and J. Chrostowski, "Nonlinear guided waves coupled nonlinearly in a planar GaAs/GaAlAs multiple quantum well structure," J. C. Campbell, F. A. Bium, D. W. Shaw, and K. L. Lawley, "GaAs electro-optic directional-coupler switch," Appl. Phys. Lett., vol. 49, no. 13, pp. 755-757, 1986.

[4] J. S. Aitchison, A. H. Kean, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55mm spectral region," Electron. Lett., vol. 27, no. 19, pp. 1709-1710, 1991.

[5] F. Dollinger, M. V. Borcke, G. Bohm, G. Trankle, and G. Weimann, "Ultrashort low-loss optical multiquantum-well GaAs/GaAlAs vertical directional coupler switch," Electron. Lett., vol. 32, no. 16, pp. 1509-1510, 1996.

[6] F. Hernandezgil, T. L. Koch, U. Koren, R. P. Gnall, and C. A. Burrus, "Tunable MQW-DBR laser with monolithically integrated GaInAsP/InP directional coupler switch," Electron. Lett., vol. 25, no. 19, pp. 1271-1272, 1989.

[7] R. J. Deri, N. Yasuoka, M. Makiuchi, A. Kuramata, O. Wada, and S. Yamakoshi, "Low-loss optical directional coupler on InP," Electron. Lett., vol. 25, no. 20, pp. 1355-1356, 1989.
[8] J. E. Zucker, K. L. Jones, M. G. Young, B. I. Miller, and U. Koren, "Compact directional coupler switches using quantum well electrorefraction," Appl. Phys. Lett., vol. 55, no. 22, pp. 2280-2282, 1989.

[9] T. Aizawa, K. G. Ravikumar, Y. Nagasawa, T. Sekiguchi, and T. Watanabe, "InGaAsP/InP MQW directional coupler switch with small and low-loss bends for fiber-array coupling," IEEE Photon. Technol. Lett., vol. 6, no. 6, pp. 709-711, 1994.

[10] T. Aizawa, Y. Nagasawa, K. G. Ravikumar, and T. Watanabe, "Polarization-independent switching operation in directional coupler using tensile-strained multi-quantum well," IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 47-49, 1995.

[11] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, "Integrated optical directional couplers in silicon-on-insulator," Electron. Lett., vol. 31, no. 24, pp. 2097-2098, 1995.

[12] R. R. A. Syms, J. Lewandowski, M. Nield, and F. Mackenzie, "Bipolar tuning of silica-on-silicon directional couplers by electron beam irradiation," IEEE Photon. Technol. Lett., vol. 6, no. 4, pp. 525-527, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top