|
Chapter 1 References
[1] F. Delorme, S. Grosmaire, A. Gloukhian, and A. Ougazzaden, "High power operation of widely tunable 1.55mm distributed Bragg reflector laser," Electron. Lett., vol. 33, no. 3, pp. 210-211, 1997.
[2] S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical intensity modulation to 40GHz using a waveguide electro-optic switch," Appl. Phys. Lett., vol. 50, no. 23, pp. 1631-1633, 1987.
[3] R. V. Schmidt and P. S. Cross, "Efficient optical waveguide switch/amplitude modulator," Opt. Lett., vol. 2, no. 2, pp. 45-47, 1978.
[4] M. Kondo, Y. Ohta, Y. Tanisawa, T. Aoyama, and R. Ishikawa, "Low-drive-voltage and low-loss polarisation-independent LiNBO3 optical waveguide switches," Electron. Lett., vol. 23, no. 21, pp. 1167-1169, 1987.
[5] A. Matoba, H. Okayama, R. Shibuya, and T. Ishida, "Low-drive-voltage 8’8 Ti:LiNbO3 switch with simplified tree structure," Electron. Lett., vol. 25, no. 2, pp. 165-166, 1989.
[6] P. Granestrand, B. Stoltz, L. Thylen, K. Bergavall, W. Dolaissen, H. Heinrich, and D. Hoffmann, "Strictly nonblocking 8’8 integrated optical switch matrix," Electron. Lett., vol. 22, no. 15, pp. 816-818, 1986.
[7] J. J. Lin, "Design and fabrication of the directional couplers in integrated optics," Master Thesis, NTU, 1990 (in R.O.C.).
[8] H. C. Hou, "Fabrication of directional coupler by nickel indiffusion lithium niobate ridge optical waveguide," Master Thesis, TKU, 1997 (in R.O.C.).
[9] K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator," Electron. Lett., vol. 34, no. 7, pp. 661-663, 1998.
[10] K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, "New travelling-wave electrode Mach-Zehnder optical modulator with 20GHz bandwidth and 4.7V driving voltage at 1.52mm wavelength," Electron. Lett., vol. 25, no. 20, pp. 1382-1383, 1989.
[11] K. Noguchi, H. Miyazawa, and O. Mitomi, ?GHz broadband Ti:LiNbO3 optical modulator with ridge structure," Electron. Lett., vol. 30, no. 12, pp. 949-950, 1994.
[12] K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, "A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5mm wavelength," IEEE Photon. Technol. Lett., vol. 1, no. 2, pp. 33-34, 1989.
[13] K. Kawano, K. Noguchi, T. Kitoh, and H. Miyazawa, "A finite element method (FEM) analysis of a shielded velocity-matched Ti:LiNbO3 optical modulator," IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 919-921, 1991.
[14] K. Noguchi, K. Kawano, T. Nozawa, and T. Suzuki, "A Ti:LiNbO3 optical intensity modulator with more than 20GHz bandwidth and 5.2V driving voltage," IEEE Photon. Technol. Lett., vol. 3, no. 4, pp. 333-335, 1991.
[15] G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. Mcelhanon, and A. S. Greenblatt, ?GHz low half-wave voltage Ti:LiNbO3 intensity modulator," Electron. Lett., vol. 28, no. 9, pp. 826-827, 1992.
[16] D. W. Dolfi and T. R. Ranganath, ?GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section," Electron. Lett., vol. 28, no. 13, pp. 1197-1198, 1992.
[17] K. Noguchi and K. Kawano, "Proposal for Ti:LiNbO3 optical modulator with modulation bandwidth of more than 150GHz," Electron. Lett., vol. 28, no. 18, pp. 1759-1761, 1992.
[18] R. S. Cheng, "Lithium niobate ridge optical waveguide devices fabricated by wet etching," PhD Thesis, NTU, 1996 (in R.O.C.).
[19] J. L. Sheu, "Fabrication of nickel indiffusion lithium niobate ridge waveguide modulators," Master Thesis, TKU, 1997 (in R.O.C.).
[20] C. Y. Sue, "Fabrication of Ni:LiNbO3 ridge optical waveguide Mach-Zehnder modulators," Master Thesis, TKU, 1998 (in R.O.C.).
[21] O. Mikami, "LiNbO3 coupled-waveguided TE/TM mode splitter," App. Phys. Lett., vol. 36, no. 7, pp. 491-493, 1980.
[22] P. K. Wei, W. S. Wang, "A TE-TM mode splitter on lithium niobate Using Ti, Ni, and MgO diffusions," IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 245-248, 1994.
[23] H. Maruyama, M. Haruna, and H. Nishihara, "TE-TM mode splitter using directional coupling between heterogeneous waveguides in LiNbO3," J. Lightwave Technol., vol. 13, no. 7, pp. 1550-1554, 1995.
[24] Y. P. Liao, "Fabrication of metal diffused TE/TM mode splitter," PhD Thesis, NTU, 1996 (in R.O.C.).
[25] R. C. Alferness and L. L. Buhl, "Long-wavelength Ti:LiNbO3 waveguide electro-optic TE?TM convertor," Electron. Lett., vol. 19, no. 2, pp. 40-41, 1983.
[26] R. C. Alferness and R. V. Schmidt, "Tunable optical waveguide directional coupler filter," App. Phys. Lett., vol. 33, no. 2, pp. 161-163, 1978.
[27] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996. [28] R. G. Hunsperger, "Integrated optics: theory and technology," Springer-Verlag 1991.
[29] M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc., vol. 135, no. 2, pp. 85-91, 1988.
[30] P. K. Wei, "Fabrication and applications of metal diffused lithium niobate optical waveguides," PhD Thesis, NTU, 1994 (in R.O.C.).
[31] T. D. Suen, "Novel methods for the fabrication of lithium optical waveguides," Master Thesis, NTU, 1993 (in R.O.C.).
[32] J. H. Yang, "Fabrication of zinc-nickel co-diffused waveguide in lithium niobate," Master Thesis, NTU, 1996 (in R.O.C.).
[33] P. K. Wei and W. S. Wang, "Fabrication of lithium niobate optical channel waveguides by nickel indiffusion," Microwave Opt. Technol. Lett., vol. 7, no. 5, pp. 219-221, 1994.
[34] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, "Nickel-diffused lithium niobate optical waveguide with process-dependent polarization," IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.
[35] W. L. Chen, D. J. Chen, and W. S. Wang, "Fabrication of LiTaO3 optical waveguides by Ni diffusion below the curie temperature," IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 203-205, 1995.
[36] W. L. Chen, R. S. Chen, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet etching," IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1318-1320, 1995.
[37] R. S. Chen, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchange wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1282-1284, 1995.
[38] O. Eknoyan, D. W. Yoon, and H. F. Taylor, "Low-loss waveguides in lithium tantalate by vapor diffusion," Appl. Phys. Lett., vol. 51, no. 6, pp. 384-386, 1987.
[39] D. W. Yoon and O. Eknoyan, "Characterization of vapor diffused Zn:LiTaO3 optical waveguides," J. Lightwave Technol., vol. 6, no. 6, pp. 877-879, 1988.
[40] W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S, Feigelson, "Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO: lithium niobate," J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, 1992.
[41] B. Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett., vol. 66, no. 12, pp. 1449-1451, 1995.
[42] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, "Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides," IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 872-875, 1992.
[43] T. R. Ranganath and S. Wang, "Suppression of Li2O out-diffusion from Ti diffused LiNbO3 optical waveguides," Appl. Phys. Lett., vol. 30, no. 8, pp. 376-379, 1977.
[44] K. Nakamura, H. Ando, and H. Shimizu, "Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment," Appl. Phys. Lett., vol. 50, pp. 1413-1414, 1987.
[45] K. Nakamura and H. Shimizu, "Ferroelectric inversion layers formed by heat treatment of proton-exchanged LiTaO3," Appl. Phys. Lett., vol. 56, pp. 1535-1536, 1990.
[46] K. Yamamoto and T. Taniuchi, "Characterization of pyrophosphoric acid proton-exchanged waveguides in LiNbO3," J. Appl. Phys., vol. 70, pp. 6663-6668, 1991.
[47] M. Goodwin and C. Stewart, "Proton-exchanged optical waveguides in y-cut lithium niobate," Electron. Lett., vol. 19, no. 6, pp. 223-224, 1983.
[48] G. Tohmon, J. Ohya, K Yamamoto, and T. Taniuchi, "Generation of ultraviolet picosecond pulses by frequency-doubling of laser diode in proton-exchanged MgO:LiNbO3 waveguide," IEEE Photon. Technol. Lett., vol. 2, no. 9, pp. 629-631, 1990.
[49] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmber, "Wet etching of proton-exchanged lithium niobate?A novel processing technique," J. Lightwave Technol., vol. 10, no. 11, pp. 1606-1609, 1992.
[50] R. S. Cheng, T. J. Wang, and W. S. Wang, "Wet-etched ridge waveguides in y-cut lithium niobate," J. Lightwave Technol., vol. 15, no. 10, pp. 1880-1887, 1997.
[51] P. Jiang, F. Zhou, P. J. R. Laybourn, and R. M. De La Rue, "Buried optical waveguide polarizer by titanium indiffusion and proton-exchange in LiNbO3," IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 881-883, 1992.
[52] R. V. Schmidt and I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.
[53] W. C. Chang, "A study of planar multimode electro-optic switches," Master Thesis, NTU, 1987 (in R.O.C.).
[54] W. B. Leu, "Measurement of the optical coupling length and numerical analysis," Master Thesis, NTU, 1992 (in R.O.C.).
[55] M. C. Gabriel and N. O. Whitaker, "Measurement of optical waveguide coupling coefficients using multiple waveguide systems," J. Lightwave Technol., vol. 7, no. 9, pp. 1343-1350, 1989.
[56] H. Kogelnik, and R. V. Schmidt, "Switched directional couplers with alternating Db," IEEE J. Quantum Electron., vol. QE-12, no. 7, pp. 396-401, 1976.
[57] M. Papuchun, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler: Cobra," Appl. Phys. Lett., vol. 27, no, 5, pp. 289-291, 1975.
[58] R. V. Schmidt, and H. Kogelnik, "Electro-optically switched coupler with stepped Db reversal using Ti-diffused LiNbO3 waveguides," Appl. Phys. Lett., vol. 28, no. 9, pp. 503-506, 1976.
[59] H. Okayama, A. Matoba, R. Shibuya, and T. Ishida, "Optically biased LiNbO3 Db reversal directional coupler switch," Electron. Lett., vol. 23, no. 21, pp. 1145-1147, 1987.
[60] P. L. Liu, "LiNbO3 waveguide modulator with 1.2mm thick electrodes fabricated by lift-off technique," IEEE J. Quantum Electron., vol. QE-18, no. 10, pp. 1780-1782, 1982.
Chapter 2 References
[1] D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, "Degenerate wavelength operation of an ultrafast all-optical AND gate using four wave mixing in a semiconductor laser amplifier," Electron. Lett., vol. 30, no. 23, pp.1938-1940. 1994.
[2] L. F. Tiemeijer, "Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier," Appl. Phys. Lett., vol. 59, no. 5, pp.499-501, 1991.
[3] S. K. Kwong, G. A. Rakuljic, and A. Yariv, "Real time image subtraction and "exclusive or" operation using a self-pumped phase conjugate mirror," Appl. Phys. Lett., vol. 48, no. 3, pp. 201-203, 1986.
[4] Y. S. Qiu, H. Li, T. S. Lu, J. Zhuang, and X. C. Gao, "Optical logic operations with self-pumped phase-conjugation output in photorefractive materials," Opt. Commun., vol. 98, no.1, pp. 29-32, 1993.
[5] H. F. Yau, H. Y. Lee, and P. J. Wang, "Optical image-combiner OR gate and optical AND gate using beam fanning effect in BaTiO3 crystals," Opt. Eng., vol. 33, no. 12, pp. 4033-4036, 1994.
[6] H. Y. Lee, H. F. Yau, and N. J. Cheng, "Incoherent optical XOR logic gate and image subtractor with series self-pumped phase conjugators," Opt. Eng., vol. 37, no. 7, pp. 2156-2161, 1998.
[7] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996, pp. 546-563.
[8] Y. Ohno, S. Kishimoto, T. Mizutani, and T. Akeyoshi, "Logic gate for optical input using monostable-bistable transition of serially connected resonant tunnelling transistors," Electron. Lett., vol. 34, no. 3, pp. 250-251, 1998.
[9] K. L. Hall and K. A. Rauschenbach, ?-Gbit/s bitwise logic," Opt. Lett., vol. 23, no. 16, pp. 1271-1273, 1998.
[10] M. Kondo, Y. Ohta, Y. Tanisawa, T. Aoyama, and R. Ishikawa, "Low-drive-voltage and low-loss polarisation-independent LiNBO3 optical waveguide switches," Electron. Lett., vol. 23, no. 21, pp. 1167-1169, 1987.
[11] H. Kogelnik, and R. V. Schmidt, "Switched directional couplers with alternating Db," IEEE J. Quantum Electron., vol. QE-12, no. 7, pp. 396-401, 1976.
[12] M. Papuchun, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler: Cobra," Appl. Phys. Lett., vol. 27, no, 5, pp. 289-291, 1975.
[13] R. V. Schmidt, and H. Kogelnik, "Electro-optically switched coupler with stepped Db reversal using Ti-diffused LiNbO3 waveguides," Appl. Phys. Lett., vol. 28, no. 9, pp. 503-506, 1976.
[14] H. Okayama, A. Matoba, R. Shibuya, and T. Ishida, "Optically biased LiNbO3 Db reversal directional coupler switch," Electron. Lett., vol. 23, no. 21, pp. 1145-1147, 1987.
[15] R. V. Schmidt and P. S. Cross, "Efficient optical waveguide switch/amplitude modulator," Opt. Lett., vol. 2, no. 2, pp. 45-47, 1978.
[16] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996, pp. 541-543.
[17] S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, and G. Raybon, "Optical intensity modulation to 40GHz using a waveguide electro-optic switch," Appl. Phys. Lett., vol. 50, no. 23, pp. 1631-1633, 1987.
[18] K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator," Electron. Lett., vol. 34, no. 7, pp. 661-663, 1998.
[19] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996, pp. 182-217.
[20] Y. J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, "GaAs-based, 1.55mm high speed, high saturation power, low-temperature grown GaAs pin photodetector," Electron. Lett., vol. 34, no. 12, pp. 1253-1255, 1998.
[21] Y. Miyamoto, M. Yoneyama, K. Hagimoto, T. Ishibashi, and N. Shimizu, ?Gbit/s high sensitivity optical receiver with uni-travelling-carrier photodiode acting as decision IC driver," Electron. Lett., vol. 34, no. 2, pp. 214-215, 1998.
[22] K. Sano, K. Murata, T. Akeyoshi, N. Shimizu, T. Otsuji, M. Yamamoto, T. Ishibashi, and E. Sano, "Ultra-fast optoelectronic circuit using resonant tunnelling diodes and uni-travelling-carrier photodiode," Electron. Lett., vol. 34, no. 2, pp. 215-217, 1998.
[23] K. Murata, K. Sano, T. Akeyoshi, N. Shimizu, E. Sano, M. Yamamoto, and T. Ishibashi, "Optoelectronic clock recovery circuit using resonant tunnelling diode and uni-travelling-carrier photodiode," Electron. Lett., vol. 34, no. 14, pp. 1424-1425, 1998.
[24] M. Yoneyama, Y. Miyamoto, K. Hagimoto, N. Shimizu, T. Ishibashi, and K. Wakita, ?Gbit/s optical gate using optical modulator driven by uni-travelling carrier photodiode," Electron. Lett., vol. 34, no. 16, pp. 1607-1609, 1998.
[25] R. G. Decorby, R. I. Macdonald, A. J. P. Hnatiw, D. Boertjes, J. N. Mcmullin, F. Gouin and J. Noad, "Packaged array of eight MSM photodetectors with uniform 12GHz bandwidth," Electron. Lett., vol. 34, no. 4, pp. 400-401, 1998.
[26] E. Droge, E. H. Bottcher, D. Bimberg, O. Reimann, and R. Steingruber, ?GHz InGaAs metal-semiconductor-metal photodetectors for polarisation-insensitive operation," Electron. Lett., vol. 34, no. 14, pp. 1421-1422, 1998.
[27] T. Chau, L. Fan, D. T. K. Tong, S. Mathai, M. C. Wu, D. L. Sivco, and A. Y. Cho, "Long wavelength velocity-matched distributed photodetectors for RF fibre optic links," Electron. Lett., vol. 34, no. 14, pp. 1422-1424, 1998.
[28] Th. Engel, E. Droge, G. Unterborsch, E. H. Bottcher, and D. Bimberg, "Reactive matching of millimetre-wave photodetectors using coplanar waveguide technology," Electron. Lett., vol. 34, no. 17, pp. 1690-1691, 1998.
[29] K. Kasahara, J. Hayashi, K. Makita, K. Taguchi, A. Suzuki, H. Nomura, and S. Matushita, "Monolithically integrated In0.53Ga0.47As-PIN/InP-MISFET photo-receiver," Electron. Lett., vol. 20, no. 8, pp. 314-315, 1984.
[30] S. Hata, M. Ikeda, T. Amano, G. Motosugi, and K. Kurumada, "Planar InGaAs/InP PINFET fabricated by Be ion implantation," Electron. Lett., vol. 20, no. 22, pp. 947-948, 1984.
[31] J. C. Campbell, C. A. Burrus, A. G. Dentai, and K. Ogawa, "Small-area high-speed InP/InGaAs phototransistor," Appl. Phys. Lett., vol. 39, no. 10, pp. 820-821, 1981.
[32] R. Driad, P. Desrousseaux, A. M. Duchenois, F. Alexandre, and P. Launay, "Planar InGaP/GaAs HBTs for high speed optoelectronic circuit applications," Electron. Lett., vol. 33, no. 1, pp. 85-86, 1997.
Chapter 3 References
[1] J. D. Fang, W. C. Chang, Y. H. Lee, and M. Y. Hsuan, "Design of smart photonic logic gates," Submitted to Journal Lightwave Technology.
[2] A. A. S. Awwal and M. A. Karim, "Polarization-encoded optical shadow casting: design of a J-K flip-flop," Appl. Opt., vol. 27, no. 17, pp. 3719-3722, 1988.
[3] A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, "Symmetric self-electro-optic effect device: optical set-reset latch," Appl. Phys. Lett., vol. 52, no. 17, pp. 1419-1421, 1988.
[4] H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett., vol. 57, no. 17, pp. 1724-1726, 1990.
[5] K. Nakatsuhara, T. Mizumoto, R. Munakata, Y. Kigure, and Y. Naito, "All-optical set-reset operation in a distributed feedback GaInAsP waveguide," IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 78-80, 1998.
[6] A. P. Kanjamala and A. F. J. Levi, "Wavelength selective electro-optic flip-flop," Electron. Lett., vol. 34, no. 3, pp. 299-300, 1998.
[7] E. A. Swanson and S. R. Chinn, ?-GHz pulse train generation using soliton compression of a Mach-Zehnder modulator output," IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 114-116, 1995.
[8] Max Ming-Kang Liu, "Principles and applications of optical communications" IRWIN 1996.
[9] M. Papuchun, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler: Cobra," Appl. Phys. Lett., vol. 27, no, 5, pp. 289-291, 1975.
[10] K. Noguchi, H. Miyazawa, and O. Mitomi, "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator," Electron. Lett., vol. 34, no. 7, pp. 661-663, 1998.
[11] M. Kondo, Y. Ohta, Y. Tanisawa, T. Aoyama, and R. Ishikawa, "Low-drive-voltage and low-loss polarisation-independent LiNBO3 optical waveguide switches," Electron. Lett., vol. 23, no. 21, pp. 1167-1169, 1987.
[12] H. Porte, R. Ferriere, and J. P. Goedgebuer, "Integrated waveguide modulator using a LiNbO3 TE?TM convertor for electrooptic coherence modulation of light," J. Lightwave Technol., vol. 6, no. 6, pp. 892-897, 1988.
Chapter 4 References
[1] D. Nesset, M. C. Tatham, L. D. Westbrook, and D. Cotter, "Degenerate wavelength operation of an ultrafast all-optical AND gate using four wave mixing in a semiconductor laser amplifier," Electron. Lett., vol. 30, no. 23, pp.1938-1940. 1994.
[2] S. K. Kwong, G. A. Rakuljic, and A. Yariv, "Real time image subtraction and "exclusive or" operation using a self-pumped phase conjugate mirror," Appl. Phys. Lett., vol. 48, no. 3, pp. 201-203, 1986.
[3] Y. S. Qiu, H. Li, T. S. Lu, J. Zhuang, and X. C. Gao, "Optical logic operations with self-pumped phase-conjugation output in photorefractive materials," Opt. Commun., vol. 98, no.1, pp. 29-32, 1993.
[4] H. F. Yau, H. Y. Lee, and P. J. Wang, "Optical image-combiner OR gate and optical AND gate using beam fanning effect in BaTiO3 crystals," Opt. Eng., vol. 33, no. 12, pp. 4033-4036, 1994.
[5] H. Y. Lee, H. F. Yau, and N. J. Cheng, "Incoherent optical XOR logic gate and image subtractor with series self-pumped phase conjugators," Opt. Eng., vol. 37, no. 7, pp. 2156-2161, 1998.
[6] Y. Ohno, S. Kishimoto, T. Mizutani, and T. Akeyoshi, "Logic gate for optical input using monostable-bistable transition of serially connected resonant tunnelling transistors," Electron. Lett., vol. 34, no. 3, pp. 250-251, 1998.
[7] K. L. Hall and K. A. Rauschenbach, ?-Gbit/s bitwise logic," Opt. Lett., vol. 23, no. 16, pp. 1271-1273, 1998.
[8] A. A. S. Awwal and M. A. Karim, "Polarization-encoded optical shadow casting: design of a J-K flip-flop," Appl. Opt., vol. 27, no. 17, pp. 3719-3722, 1988.
[9] A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, "Symmetric self-electro-optic effect device: optical set-reset latch," Appl. Phys. Lett., vol. 52, no. 17, pp. 1419-1421, 1988.
[10] H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett., vol. 57, no. 17, pp. 1724-1726, 1990.
[11] K. Nakatsuhara, T. Mizumoto, R. Munakata, Y. Kigure, and Y. Naito, "All-optical set-reset operation in a distributed feedback GaInAsP waveguide," IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 78-80, 1998.
[12] A. P. Kanjamala and A. F. J. Levi, "Wavelength selective electro-optic flip-flop," Electron. Lett., vol. 34, no. 3, pp. 299-300, 1998.
[13] J. D. Fang, W. C. Chang, Y. H. Lee, and M. Y. Hsuan, "Design of smart photonic logic gates," Submitted to Journal Lightwave Technology.
[14] H. B. Lin, "A study of optical waveguide bends and branches with low-loss and wide-angle characteristics," PhD Thesis, NTU, 1995 (in R.O.C.).
Chapter 5 References
[1] S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, "Channel optical waveguide directional," Appl. Phys. Lett., vol. 22, no. 2, pp. 46-47, 1973.
[2] J. C. Campbell, F. A. Bium, D. W. Shaw, and K. L. Lawley, "GaAs electro-optic directional-coupler switch," Appl. Phys. Lett., vol. 27, no. 4, pp. 202-204, 1975.
[3] M. Cada, R. C. Gauthier, B. E. Paton, and J. Chrostowski, "Nonlinear guided waves coupled nonlinearly in a planar GaAs/GaAlAs multiple quantum well structure," J. C. Campbell, F. A. Bium, D. W. Shaw, and K. L. Lawley, "GaAs electro-optic directional-coupler switch," Appl. Phys. Lett., vol. 49, no. 13, pp. 755-757, 1986.
[4] J. S. Aitchison, A. H. Kean, A. Villeneuve, and G. I. Stegeman, "Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55mm spectral region," Electron. Lett., vol. 27, no. 19, pp. 1709-1710, 1991.
[5] F. Dollinger, M. V. Borcke, G. Bohm, G. Trankle, and G. Weimann, "Ultrashort low-loss optical multiquantum-well GaAs/GaAlAs vertical directional coupler switch," Electron. Lett., vol. 32, no. 16, pp. 1509-1510, 1996.
[6] F. Hernandezgil, T. L. Koch, U. Koren, R. P. Gnall, and C. A. Burrus, "Tunable MQW-DBR laser with monolithically integrated GaInAsP/InP directional coupler switch," Electron. Lett., vol. 25, no. 19, pp. 1271-1272, 1989.
[7] R. J. Deri, N. Yasuoka, M. Makiuchi, A. Kuramata, O. Wada, and S. Yamakoshi, "Low-loss optical directional coupler on InP," Electron. Lett., vol. 25, no. 20, pp. 1355-1356, 1989. [8] J. E. Zucker, K. L. Jones, M. G. Young, B. I. Miller, and U. Koren, "Compact directional coupler switches using quantum well electrorefraction," Appl. Phys. Lett., vol. 55, no. 22, pp. 2280-2282, 1989.
[9] T. Aizawa, K. G. Ravikumar, Y. Nagasawa, T. Sekiguchi, and T. Watanabe, "InGaAsP/InP MQW directional coupler switch with small and low-loss bends for fiber-array coupling," IEEE Photon. Technol. Lett., vol. 6, no. 6, pp. 709-711, 1994.
[10] T. Aizawa, Y. Nagasawa, K. G. Ravikumar, and T. Watanabe, "Polarization-independent switching operation in directional coupler using tensile-strained multi-quantum well," IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 47-49, 1995.
[11] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, "Integrated optical directional couplers in silicon-on-insulator," Electron. Lett., vol. 31, no. 24, pp. 2097-2098, 1995.
[12] R. R. A. Syms, J. Lewandowski, M. Nield, and F. Mackenzie, "Bipolar tuning of silica-on-silicon directional couplers by electron beam irradiation," IEEE Photon. Technol. Lett., vol. 6, no. 4, pp. 525-527, 1994.
|