跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝堅銘
研究生(外文):Hsieh Chien-Ming
論文名稱:以共製法結合賦形劑之微晶纖維素的特性與功能性研究
論文名稱(外文):Studies on the Characteristics and Functionality of Microcrystalline Cellulose by Co-drying with Excipients
指導教授:許明照許明照引用關係
指導教授(外文):Sheu Ming-Thau
學位類別:碩士
校院名稱:台北醫學院
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:微晶纖維素直接壓錠共同乾燥單醣類低取代羥丙基纖維素
外文關鍵詞:Microcrystalline celluloseDirect compressionCo-drymonosaccharidesLow-subsituted hydroxypropyl cellulose
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微晶纖維素(Microcrystalline cellulose, MCC)是經由強酸水解木材的α-cellulose,而得到聚合度大約為200至300的葡萄糖分子聚合體。由於其具備良好的壓錠性,以及低化學反應活性,使得微晶纖維素被認為是目前最有用的直接壓錠賦形劑之一。然而由於微晶纖維素顆粒形狀的不規則,使得其粉末的流動性不佳,造成錠片重量上的差異。另外其所製得之錠片崩散度不佳。因此為了能有效的改善甚至解決這些問題,所以本研究的目的即是希望藉由與微晶纖維素分子基本結構相似的碳水化合物類賦形劑(包括:不同等級的低取代羥丙基纖維素,Low-subsituted hydroxy-propyl cellulose, L-HPC)或同時具有高水溶性的材質(包括:葡萄糖、甘露醇、及山梨醇)與微晶纖維素溼團塊共同乾燥製備來修飾微晶纖維素的物理性質,並藉由其錠片功能性的探討來評估與微晶纖維素溼團塊共製的效果。
首先由粉體性質的實驗結果顯示經由共同乾燥後的粉末明顯比物理混合後具有較佳的流動性。而由掃描式電子顯微鏡分析圖中可以了解其流動性的差異可能是由於其顆粒形狀的不同所造成,共製後之粉末顆粒形狀規則且表面光滑,而物理混合則呈不規則狀,其顆粒表面如片狀斷層。錠片功能性探討中,物理混合的錠片具有較高的硬度及強度,然而其Yield Press-ure較高。而共製之錠片其Yield Pressure較低,具有較好的壓錠性,且主要以塑性形變的方式成錠。在單糖類與微晶纖維素共製中,山梨醇之錠片顯示出較好的錠片強度,而低取代羥丙基纖維素類錠片強度則較單糖類好。在錠片的崩散試驗及吸水速率實驗中,經由共製後之錠片其崩散時間明顯比物理混合短,尤其是微晶纖維素與低取代羥丙基纖維素共製之錠片具有快速崩散的能力。而物理混合的崩散時間幾乎超過三十分鐘。
綜合以上所述,雖然經由共製的過程下降了微晶纖維素的硬度及總體強度,但其硬度仍在可接受的範圍內,並且共製處方能有效的改善微晶纖維素的流動性,且擁有較佳的崩散效果。因此共製的粉末處理方式能提供日後製造或修飾賦形劑的有效方法。
Microcrystalline cellulose (MCC) is derived from purified wood α-cellulose by a severe acid hydrolysis, yielding a cellulose with a degree of polymerization (D.P.) of about 200 to 300. Because it equipped with an excellent compactibility and a low chemical reactivity, it makes the MCC to become one of the most useful excipient of direct compression tableting. Because the particle shape of MCC is irregular, it causes bad flowability, the variation of tablets weight, and the poor disintegration properties. In an attempt to improve or solve these problems, the aim of this study was to modify the physical characteristic of MCC by co-drying of MCC slurry with the carbohydrate excipients which are similar to the basic molecular structure of MCC (that including various grades of Low-substituted hydroxypropyl cellulose, L-HPC), or with the materials which have high solubility (that including glucose, mannitol, and sorbitol). Furthermore, functional performances of the co-dried MCC slurry with these excipients were investigated.
Firstly, the result of the powder property has shown the co-dried powder had a better flowability than physical mixtures. SEM photographs revealed that the difference of the flowability was caused by the different particle shape. The particle shape of MCC after co-dried is regular with a smooth surface, but the physically mixed one is irregular with chipped edge. In the examination of the tablet’s functionality, most of the tablets with physical mixture demonstrated a higher value of hardness and tensile strength but with a higher yield pressure. The co-dried tablets had a lower yield pressure with better compressibility and their compression mainly through plastic deformation. Moreover, the tensile strength of tablets produced from MCC co-dried with sorbitol was better than the tablets produced from MCC co-dried with other monosaccharides. Nevertheless, the tensile strength of tablet prepared with co-dried MCC with L-HPC was better than co-dried with various monosaccharides. In the disintegration test and the rate of water uptake experiments, the disintegration time of tablet parpared with co-dried MCC is shorter than the physical mixtures. Especially, the tablets prepared with MCC co-dried with L-HPC had a rapid disintegration rate. However, the disintegration time of tablets from physical mixtures was almost over 30 minutes.
Generally, although the hardness and tensile strength of tablets prepared with co-dried MCC with excipients would lower, the flowability and the disintegration ability would be efficiently improved. Therefore, the co-dried process with be an efficient method for development new excipientds with excellent characteristics.
壹、緒論
貳、實驗部份
一﹒實驗材料及儀器設備
二﹒實驗方法
1. 處方設計
2. 粉末製備
3. 粉末性質測定
4. 錠片製備及錠片性質試驗
參、結果與討論
一﹒粉體性質探討
1. 粉末之流動性
2. 單糖類粉末之DSC評估
二﹒錠片之壓錠性質
三﹒錠片之彈性恢復性
四﹒錠片之硬度
五﹒錠片之機械性質
1. 楊氏係數
2. 臨界壓力強度因子
3. 碎裂韌性
4. 抗張強度
六﹒錠片之崩散試驗
七﹒錠片之吸水性質
1. 吸水速率常數 (K0)
2. 各處方之吸水量 (A)
肆、結論
伍、參考資料
1. Shangraw R.F., Compressed Tablets by Direct Compression. In Liberman H. A. and Lachman L. (eds), Pharmaceutical Dosage Form: Tablets, Vol. 1, Marcel Dekker, Inc. , New York (1989) pp.209-210.
2. Sheth B. B., Bandelin F. J., Shangraw R. F., Compressed Tablets. In Liberman H. A. and Lachmam L. (eds.), Pharmaceutical Dosage Form: Tablets, Vol. 1, Marcel Dekker, Inc., New York (1980) pp.147-148.
3. Fassihi A. R., Kanfer I., Effect of Compressibility and Powder Flow Properties on Tablet Weight Variation., Drug Dev. Ind. Pharm., (1986), 12, 1947-1966.
4. Snaghvi P. P., Collins C. C., Shukla A. J., Evaluation of Perflo Modified Starches as New Direct Compression Excipients. I Tabletting Characteristics., Pharm. Res. (1993), 10, 1597-1603.
5. Munöz-Ruiz A., M. Perales M. C., Antequera M. V. V., Villar T. P., Munöz-Munöz N., and Jimenez-Castellanos M.R., Rheology and Compression Characteristics of Lactose Based Direct Compression Excipients, Int. J. Pharm., (1993), 95, 201-207.
6. Bos C. E., Bolhuis G. K., Lerk C. F., Duineveld C. A. A., Evaluation of modified rice starch, a new excipient for direct compression. Drug Dev. Ind. Pharm., (1992), 18, 93-106.
7. Garr J. S. M., Bangudu A. B., Evaluation of sorghum starch as a tablet excipient. Drug Dev. Ind. Pharm., (1991), 17, 1-6.
8. Sanghvi P. P., Collins C. C. and Shukla A. J., Evaluation of Preflo® modified starches as new direct compression excipients. I. Tabletting characteristics. Pharm. Res., (1993), 10, 1597-1603.
9. Doelker E., Comparative compaction properties of various microcrystalline cellulose types and generic products. Drug Dev. Ind. Pharm., (1993), 19, 2399-2471.
10. Nakai Y., Fukuoka E., Nakajima S., Hasegawa J., Crystallinity and Physical Characteristics of Microcrystalline Cellulose. Chem. Pharm. Bull., (1997), 25, 96-101.
11. George E. Reier., Nagin K. Patel, Ajay H. Upadhyay, James S. Bergum, An evaluation of microcrystalline cellulose and lactose excipients using an instrumented single station tablet press. Int. J. Pharm., (1994), 110, 203-210.
12. Shangraw R. F., Demarest, D. A., A survey of current industrial practices in the formulation and manufacture of tablets and capsules. Pharm. Technol., (1993), 17, 254-258.
13. Armstrong N. A., Selection of excipients for direct compression tablet formulations. Pharm. Technol. Asia., (1998), Feb/Mar. 6-11.
14. Tsai T., Wu J. S., Ho H. O., Sheu M. T., Modification of physical characteristics of microcrystalline cellulose by codrying withβ-cyclodextrins. J. Pharm. Sci. (1998), 87, 117-122.
15. Khan F., Pilpel N., The Effect of Particle Size and Moisture on the Tensile Strength of Microcrystalline Cellulose Powder. Powder Technol., (1986), 48, 145-150.
16. Bolhuis G.K., Chowhan Z.T., Materials for direct compaction. In Alderborn G., Nystrom C. (eds.), Pharmaceutical Powder Compaction Technology. Marcel Dekker, (1996), pp. 419-501.
17. Muñoz-Ruiz A., Antequera V. V., Parales C. M., Ballesteros R. J. C., Tabletting properties of new granular microcrystalline cellulose. Eur. J. Pharm. Biopharm., (1994), 40, 36-40.
18. Staniforth J. N., Tralhao M., Blending characteristics of large particle size microcrystalline cellulose for direct compression. Proceedings of the AAPS conference, (1996), PT 6168.
19. Staniforth J. N., Baichwal A. R., Hard J. P., Heng P. W. S., Effect of addition of water on the rheological and mechanical properties of microcrystalline cellulose. Int. J. Pharm., (1988), 41, 231-236.
20. Doelker E., Massuelle D., Veuillez F., Humbert-Droz P., Morphological, packing, flow and tableting properties of new avicel types. Drug Dev. Ind. Pharm., (1995), 21, 643-661.
21. Robert O., Williams III, James W. MCginity, Compaction properties of microcrystalline cellulose and sodium sulfathiazole in combination with talc or magnesium stearate. J. Pharm. Sci., (1989), 78, 1025-1034.
22. Fernandez-Arevalo M., Vela M. T., Rabasco A.M., Rheological study of lactose coated with acrylic resins. Drug Dev. Ind. Pharm., (1990), 16, 295-313.
23. Bolhuis G. K., Reichman G., Lerk C. F., Van Kamp H. V., Zuurman K., Evaluation of anhydrous -lactose, a new excipient in direct compression. Drug Dev. Ind. Pharm., (1985), 11, 1657-1681.
24. Whiteman M., Yarwood R. J., The evaluation of five lactose based materiala as direct compression tablets excipients. Drug Dev. Ind. Pharm., (1988), 14, 1023-1040.
25. Bavitz, J. F., Schwartz, J. B., Direct compression vehicles. Drug Cosmet. Ind. (1974), 114, 44-72.
26. Mehra D. K., West K. P., Wiggins J. D., Coprocessed microcrystalline cellulose and calcium carbonate composition and its preparation. US Patent No: 4744987 (1987).
27. Armstrong N. A., Roscheisen G., Alaghbar M. R. A. K., Cellactose as tableting diluent. Manufacturing Chemist, (1996), 67, 25-26.
28. Belda P. M., Mielck J. B., The tabletting behaviour of cellactose compared with mixtures of celluloses with lactoses. Eur. J. Pharm. Biopharm., (1996), 42, 325-330.
29. DuVall R.N., Koshy K.T., Dashiell R.E., Comparative evaluation of dextrose and spray-dried lactose in direct compression system. J. Pharm. Sci., (1965), 54, 1196-1200.
30. Henderson N. L., Bruno A.J., Lactose USP (beadlets) and dextrose (PAF 2011): two new agents for direct compression. J. Pharm. Sci., (1970), 59, 1336-1340.
31. Armstrong N. A., Patel A., Jones T. M., The compressional properties of dextrose monohydrate and anhydrous dextrose of varying water contents. In Rubinstein M.H., (eds.), Pharmaceutical technology: tableting technology, Vol 1, Ellis Horwood, (1987), pp. 127-138.
32. Daoust R. G., Lynch M. J., Mannitol in chewable tablets. Drug Cosmet. Ind., (1963), 93, 26-28, 88, 92, 128-129.
33. Ainley W., Paul J. W., Handbook of pharmaceutical excipients, second edition, The Pharmaceutical Press, London, (1994), pp. 294-298, 477-480.
34. Pharmaceutical Bulletin LM-20, Hygroscopicity comparison study of mannitol and sorbitol as chewable tablet excipients, Atlas chemical industries, Inc., Wilmington, Del., August, 1963.
35. Debord B., Lefebvre C., Guyot-Hermann A. M., Hubert J., Bouche R., Guyot J. C., Study of different crystalline forms of mannitol : comparative behaviour under compression. Drug Dev. Ind. Pharm., (1987), 13, 1533-1546.
36. Ward D. R., Lathrop L. B., Lynch M. J. Dissolution and compatibility consideration for the use of mannitol in solid dosage forms. J. Pharm. Sci., (1969), 58, 1464-1467.
37. Kanig J. L., Properties of fused mannitol in compressed tablets. J Pharm Sci, (1964), 53:188-192.
38. Molokhia A. M., Al-Shora H. I., Hammad A. A., Aging of tablets prepared by direct compression of bases with different moisture content. Drug Dev. Ind. Pharm., (1987), 13, 1933-1946.
39. Juppo A. M., Kervinen L., Yliruusi J., Kristoffersson E., Compression of lactose, glucose and mannitol granules. J. Pharm. Pharmacol., (1995), 47, 543-549.
40. Roberts R. J., Rowe R. C., The effect of punch velocity on the compaction of a variety of materials. J. Pharm. Pharmacol. (1985), 37, 377-384.
41. Westerhuis J. A., de Haan P., Zwinkels J., Jansen W. T., Coenegracht P. J. M., Lerk C. F., Optimisation of the composition and production of mannitol/microcrystalline cellulose tablets. Int. J. Pharm., (1996), 143, 151-162.
42. DuRoss J. W., Modification of the crystalline structure of sorbitol and its effects on tabletting characteristic. Pharm. Technol. (1984), 8, 42-53.
43. Molokhia A. M., Moustafa M. A., Gouda M. W., Effect of storage conditions on the hardness, disintegration and drug release from some tablet bases. Drug Dev. Ind. Pharm., (1982), 8, 283-292.
44. Bolton S., Atluri R.m., Crystalline sorbitol tablets : effect of mixing time and lubricants on manufacturing. Drug Cosmet. Ind., (1984), 135(5), 44, 46-50.
45. Basedow A. M., Möschl G. A., Sorbitol instant — an excipient with unique tableting properties. Drug Dev. Ind. Pharm., (1986), 12, 2061-2089.
46. Esezobo S., The effect of some excipients on the physical properties of a paracetamol tablet formulation. J. Pharm. Pharmacol., (1985), 37, 193-195.
47. Shin-Etsu Chemical Co Ltd. Technical literature: L-HPC, low-substituted hydroxypropyl cellulose. (1991).
48. Nakagami H., Nada M., Application of microized insoluble cellulose to sustained release tablets. Proc. Int. Symp. Control. Bioact. Mater. (1988), 15, 11-12.
49. Kawashima Y., Takeuchi H., Hino T., Niwa T., Lin T. L., Sekigawa F., Kawahara K., Low-substituted hydroxypropyl cellulose as a sustained drug release matrix base or disintegrant depending on its particle size and loading in formulation. Pharm. Res., (1993), 10, 351-355.
50. Heckel, R.W., Density-pressure relationship in powder compaction. Trans. Metall. Soc. Aime., (1961), 221, 671-675.
51. Roberts R. J., Rowe R. C., York P., The relationship between Young’s modulus of elasticity of organic solid and their molecular structure. Powder Technol., (1991), 65, 139-146.
52. Roberts R. J., Rowe R. C., York P., The relationship between the fracture properties, tensile strength and critical stress intensity factor of organic solids and their molecular structure, Int. J. Pharm., (1995), 125, 157-162.
53. Brown W .F., Srawley J. E., ASTM Special Tech. Publ., (1996), 410.
54. Roberts J. C., Power J. M., Craig R.G., J. Mat. Sci., (1978), 13, 965-971.
55. Nyström C., Alderborn G., Duberg M., Karehill P. G., Bonding surface area and bonding mechanism-two important factors for the understanding of powder compactability. Drug Dev. Ind. Pharm., (1993), 19, 2143-2196.
56. Mashadi A. B., Newton J. M., The characterization of the mechanical properties of microcrystalline cellulose: a fracture mechanics approach. J. Pharm. Pharmacol., (1987), 39, 961-965.
57. Bassam F., York P., Rowe R. C. , Roberts R. J., Effect of particle size and source on variability of Young’s modulus of microcrystalline cellulose. J. Pharm. Pharmacol., (1988), 40, Suppl. 68P.
58. Spriggs R.M., J. Am. Ceram. Soc., (1961), 44, 628-629.
59. Joseph L. Kanig, Edward M. Rudnic, The mechanisms of disintegrant action, Pharm. Technol., (1984), April, 50-63.
60. Yunxia B., Hisakazu S., Yorinobu Y., Kazumi D., Akinobu O., Kotaro I., Preparation and Evaluation of a Compressed Tablet rapidly Disintegrating in the Oral Cavity. Chem. Pharm. Bull., (1996), 44, 2121-2127.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top