|
1. Shangraw R.F., Compressed Tablets by Direct Compression. In Liberman H. A. and Lachman L. (eds), Pharmaceutical Dosage Form: Tablets, Vol. 1, Marcel Dekker, Inc. , New York (1989) pp.209-210. 2. Sheth B. B., Bandelin F. J., Shangraw R. F., Compressed Tablets. In Liberman H. A. and Lachmam L. (eds.), Pharmaceutical Dosage Form: Tablets, Vol. 1, Marcel Dekker, Inc., New York (1980) pp.147-148. 3. Fassihi A. R., Kanfer I., Effect of Compressibility and Powder Flow Properties on Tablet Weight Variation., Drug Dev. Ind. Pharm., (1986), 12, 1947-1966. 4. Snaghvi P. P., Collins C. C., Shukla A. J., Evaluation of Perflo Modified Starches as New Direct Compression Excipients. I Tabletting Characteristics., Pharm. Res. (1993), 10, 1597-1603. 5. Munöz-Ruiz A., M. Perales M. C., Antequera M. V. V., Villar T. P., Munöz-Munöz N., and Jimenez-Castellanos M.R., Rheology and Compression Characteristics of Lactose Based Direct Compression Excipients, Int. J. Pharm., (1993), 95, 201-207. 6. Bos C. E., Bolhuis G. K., Lerk C. F., Duineveld C. A. A., Evaluation of modified rice starch, a new excipient for direct compression. Drug Dev. Ind. Pharm., (1992), 18, 93-106. 7. Garr J. S. M., Bangudu A. B., Evaluation of sorghum starch as a tablet excipient. Drug Dev. Ind. Pharm., (1991), 17, 1-6. 8. Sanghvi P. P., Collins C. C. and Shukla A. J., Evaluation of Preflo® modified starches as new direct compression excipients. I. Tabletting characteristics. Pharm. Res., (1993), 10, 1597-1603. 9. Doelker E., Comparative compaction properties of various microcrystalline cellulose types and generic products. Drug Dev. Ind. Pharm., (1993), 19, 2399-2471. 10. Nakai Y., Fukuoka E., Nakajima S., Hasegawa J., Crystallinity and Physical Characteristics of Microcrystalline Cellulose. Chem. Pharm. Bull., (1997), 25, 96-101. 11. George E. Reier., Nagin K. Patel, Ajay H. Upadhyay, James S. Bergum, An evaluation of microcrystalline cellulose and lactose excipients using an instrumented single station tablet press. Int. J. Pharm., (1994), 110, 203-210. 12. Shangraw R. F., Demarest, D. A., A survey of current industrial practices in the formulation and manufacture of tablets and capsules. Pharm. Technol., (1993), 17, 254-258. 13. Armstrong N. A., Selection of excipients for direct compression tablet formulations. Pharm. Technol. Asia., (1998), Feb/Mar. 6-11. 14. Tsai T., Wu J. S., Ho H. O., Sheu M. T., Modification of physical characteristics of microcrystalline cellulose by codrying withβ-cyclodextrins. J. Pharm. Sci. (1998), 87, 117-122. 15. Khan F., Pilpel N., The Effect of Particle Size and Moisture on the Tensile Strength of Microcrystalline Cellulose Powder. Powder Technol., (1986), 48, 145-150. 16. Bolhuis G.K., Chowhan Z.T., Materials for direct compaction. In Alderborn G., Nystrom C. (eds.), Pharmaceutical Powder Compaction Technology. Marcel Dekker, (1996), pp. 419-501. 17. Muñoz-Ruiz A., Antequera V. V., Parales C. M., Ballesteros R. J. C., Tabletting properties of new granular microcrystalline cellulose. Eur. J. Pharm. Biopharm., (1994), 40, 36-40. 18. Staniforth J. N., Tralhao M., Blending characteristics of large particle size microcrystalline cellulose for direct compression. Proceedings of the AAPS conference, (1996), PT 6168. 19. Staniforth J. N., Baichwal A. R., Hard J. P., Heng P. W. S., Effect of addition of water on the rheological and mechanical properties of microcrystalline cellulose. Int. J. Pharm., (1988), 41, 231-236. 20. Doelker E., Massuelle D., Veuillez F., Humbert-Droz P., Morphological, packing, flow and tableting properties of new avicel types. Drug Dev. Ind. Pharm., (1995), 21, 643-661. 21. Robert O., Williams III, James W. MCginity, Compaction properties of microcrystalline cellulose and sodium sulfathiazole in combination with talc or magnesium stearate. J. Pharm. Sci., (1989), 78, 1025-1034. 22. Fernandez-Arevalo M., Vela M. T., Rabasco A.M., Rheological study of lactose coated with acrylic resins. Drug Dev. Ind. Pharm., (1990), 16, 295-313. 23. Bolhuis G. K., Reichman G., Lerk C. F., Van Kamp H. V., Zuurman K., Evaluation of anhydrous -lactose, a new excipient in direct compression. Drug Dev. Ind. Pharm., (1985), 11, 1657-1681. 24. Whiteman M., Yarwood R. J., The evaluation of five lactose based materiala as direct compression tablets excipients. Drug Dev. Ind. Pharm., (1988), 14, 1023-1040. 25. Bavitz, J. F., Schwartz, J. B., Direct compression vehicles. Drug Cosmet. Ind. (1974), 114, 44-72. 26. Mehra D. K., West K. P., Wiggins J. D., Coprocessed microcrystalline cellulose and calcium carbonate composition and its preparation. US Patent No: 4744987 (1987). 27. Armstrong N. A., Roscheisen G., Alaghbar M. R. A. K., Cellactose as tableting diluent. Manufacturing Chemist, (1996), 67, 25-26. 28. Belda P. M., Mielck J. B., The tabletting behaviour of cellactose compared with mixtures of celluloses with lactoses. Eur. J. Pharm. Biopharm., (1996), 42, 325-330. 29. DuVall R.N., Koshy K.T., Dashiell R.E., Comparative evaluation of dextrose and spray-dried lactose in direct compression system. J. Pharm. Sci., (1965), 54, 1196-1200. 30. Henderson N. L., Bruno A.J., Lactose USP (beadlets) and dextrose (PAF 2011): two new agents for direct compression. J. Pharm. Sci., (1970), 59, 1336-1340. 31. Armstrong N. A., Patel A., Jones T. M., The compressional properties of dextrose monohydrate and anhydrous dextrose of varying water contents. In Rubinstein M.H., (eds.), Pharmaceutical technology: tableting technology, Vol 1, Ellis Horwood, (1987), pp. 127-138. 32. Daoust R. G., Lynch M. J., Mannitol in chewable tablets. Drug Cosmet. Ind., (1963), 93, 26-28, 88, 92, 128-129. 33. Ainley W., Paul J. W., Handbook of pharmaceutical excipients, second edition, The Pharmaceutical Press, London, (1994), pp. 294-298, 477-480. 34. Pharmaceutical Bulletin LM-20, Hygroscopicity comparison study of mannitol and sorbitol as chewable tablet excipients, Atlas chemical industries, Inc., Wilmington, Del., August, 1963. 35. Debord B., Lefebvre C., Guyot-Hermann A. M., Hubert J., Bouche R., Guyot J. C., Study of different crystalline forms of mannitol : comparative behaviour under compression. Drug Dev. Ind. Pharm., (1987), 13, 1533-1546. 36. Ward D. R., Lathrop L. B., Lynch M. J. Dissolution and compatibility consideration for the use of mannitol in solid dosage forms. J. Pharm. Sci., (1969), 58, 1464-1467. 37. Kanig J. L., Properties of fused mannitol in compressed tablets. J Pharm Sci, (1964), 53:188-192. 38. Molokhia A. M., Al-Shora H. I., Hammad A. A., Aging of tablets prepared by direct compression of bases with different moisture content. Drug Dev. Ind. Pharm., (1987), 13, 1933-1946. 39. Juppo A. M., Kervinen L., Yliruusi J., Kristoffersson E., Compression of lactose, glucose and mannitol granules. J. Pharm. Pharmacol., (1995), 47, 543-549. 40. Roberts R. J., Rowe R. C., The effect of punch velocity on the compaction of a variety of materials. J. Pharm. Pharmacol. (1985), 37, 377-384. 41. Westerhuis J. A., de Haan P., Zwinkels J., Jansen W. T., Coenegracht P. J. M., Lerk C. F., Optimisation of the composition and production of mannitol/microcrystalline cellulose tablets. Int. J. Pharm., (1996), 143, 151-162. 42. DuRoss J. W., Modification of the crystalline structure of sorbitol and its effects on tabletting characteristic. Pharm. Technol. (1984), 8, 42-53. 43. Molokhia A. M., Moustafa M. A., Gouda M. W., Effect of storage conditions on the hardness, disintegration and drug release from some tablet bases. Drug Dev. Ind. Pharm., (1982), 8, 283-292. 44. Bolton S., Atluri R.m., Crystalline sorbitol tablets : effect of mixing time and lubricants on manufacturing. Drug Cosmet. Ind., (1984), 135(5), 44, 46-50. 45. Basedow A. M., Möschl G. A., Sorbitol instant — an excipient with unique tableting properties. Drug Dev. Ind. Pharm., (1986), 12, 2061-2089. 46. Esezobo S., The effect of some excipients on the physical properties of a paracetamol tablet formulation. J. Pharm. Pharmacol., (1985), 37, 193-195. 47. Shin-Etsu Chemical Co Ltd. Technical literature: L-HPC, low-substituted hydroxypropyl cellulose. (1991). 48. Nakagami H., Nada M., Application of microized insoluble cellulose to sustained release tablets. Proc. Int. Symp. Control. Bioact. Mater. (1988), 15, 11-12. 49. Kawashima Y., Takeuchi H., Hino T., Niwa T., Lin T. L., Sekigawa F., Kawahara K., Low-substituted hydroxypropyl cellulose as a sustained drug release matrix base or disintegrant depending on its particle size and loading in formulation. Pharm. Res., (1993), 10, 351-355. 50. Heckel, R.W., Density-pressure relationship in powder compaction. Trans. Metall. Soc. Aime., (1961), 221, 671-675. 51. Roberts R. J., Rowe R. C., York P., The relationship between Young’s modulus of elasticity of organic solid and their molecular structure. Powder Technol., (1991), 65, 139-146. 52. Roberts R. J., Rowe R. C., York P., The relationship between the fracture properties, tensile strength and critical stress intensity factor of organic solids and their molecular structure, Int. J. Pharm., (1995), 125, 157-162. 53. Brown W .F., Srawley J. E., ASTM Special Tech. Publ., (1996), 410. 54. Roberts J. C., Power J. M., Craig R.G., J. Mat. Sci., (1978), 13, 965-971. 55. Nyström C., Alderborn G., Duberg M., Karehill P. G., Bonding surface area and bonding mechanism-two important factors for the understanding of powder compactability. Drug Dev. Ind. Pharm., (1993), 19, 2143-2196. 56. Mashadi A. B., Newton J. M., The characterization of the mechanical properties of microcrystalline cellulose: a fracture mechanics approach. J. Pharm. Pharmacol., (1987), 39, 961-965. 57. Bassam F., York P., Rowe R. C. , Roberts R. J., Effect of particle size and source on variability of Young’s modulus of microcrystalline cellulose. J. Pharm. Pharmacol., (1988), 40, Suppl. 68P. 58. Spriggs R.M., J. Am. Ceram. Soc., (1961), 44, 628-629. 59. Joseph L. Kanig, Edward M. Rudnic, The mechanisms of disintegrant action, Pharm. Technol., (1984), April, 50-63. 60. Yunxia B., Hisakazu S., Yorinobu Y., Kazumi D., Akinobu O., Kotaro I., Preparation and Evaluation of a Compressed Tablet rapidly Disintegrating in the Oral Cavity. Chem. Pharm. Bull., (1996), 44, 2121-2127.
|