跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪佑襄
研究生(外文):Yow-Shieng Uang
論文名稱:Caffeicacid在家兔體內的藥物動態學及代謝的研究
論文名稱(外文):Pharmacokinetic and metabolic study of caffeic acid in rabbits
指導教授:許光陽許光陽引用關係
學位類別:博士
校院名稱:台北醫學院
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:181
中文關鍵詞:caffeic acid藥物動態學雙峰或多峰之吸收LC/MS/MS代謝物
相關次數:
  • 被引用被引用:2
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Caffeic acid (CA) 屬於多酚類化合物,廣泛存於中藥、蔬果、茶及咖啡中,具有消炎、保肝、抑制血小板凝集和抗腫瘤等藥理作用。但其藥物動態學及代謝途徑的研究非常少且不是很詳細。因此,本研究的目的即以家兔為實驗動物,探討 CA 的藥物動態學,並運用 LC/MS/MS 研究 CA 的代謝途徑。靜脈注射不同劑量之 CA,其血漿中濃度經時變化,可以二室模式表示。投予劑量 5 mg/kg 所得之 beta-half life (11.1 +/- 1.6 分鐘) 很明顯地比投予劑量 10 mg/kg (14.3 +/- 2.9 分鐘) 或 25 mg/kg (13.6 +/- 1.8 分鐘) 短,而投予劑量 5 mg/kg 所得之清除率 (0.0263 +/- 0.0025 l/kg/min) 亦比投予劑量 10 mg/kg (0.0200+/- 0.0054 l/kg/min) 或 25 mg/kg (0.0219+/-0.0050 l/kg/min) 大;顯示 CA 在投予劑量 10 與 25 mg/kg 範圍內,其藥物動態學不受劑量的影響,但在較低的劑量下,其藥物動態學則呈現 dose-dependent。此現象主要來自投予劑量 5 mg/kg 所得之 腎清除率 (CLr ,0.0168 +/-  0.0029 l/kg/min) 與腎排除速率常數(kr,0.112+/- 0.013 (1/min)) 很明顯地比投予劑量 10 mg/kg (CLr ,0.0120+/- 0.0035 l/kg(1/min);kr,0.0789+/- 0.0089 (1/min)) 或 25 mg/kg (CLr ,0.0125+/- 0.0049 l/kg/min;kr,0.0668 +/- 0.0170 (1/min)) 大。k12/k21、k12/k 10 及 k21/k10 的比值近於 0.5,可知 CA 由 central compartment 排除的速率,比分佈到 peripheral compartment 快。在分別投予劑量 5、10 與 25 mg/kg 後,CA 以原型由尿中排出的比率分別為 63.4 +/- 6.1、60.0+/- 6.4 及 55.4+/- 11.3 (%),且在投藥後 2 小時內,大部分即由尿中排出。口服投予家兔 CA 後,每隻家兔之血漿中濃度經時變化皆呈現雙峰或多峰之吸收現象。依投予劑量 (5, 10 25 mg/kg),absorption-half life 分別為 39.7+/- 11.4、40.2+/- 16.3 及 54.0 +/- 29.9 (分鐘);Tmax 分別為 33.3+/- 9.8、25.8+/-15.3 及 24.2+/- 13.2 (分鐘);Cmax 分別為 0.810+/- 0.337、1.69 +/- 0.92 及 3.95+/- 2.02 (ug/ml);生體可用率分別為 0.364+/- 0.052、0.379+/- 0.037 及 0.402+/- 0.087。由 CA 直接投於十二指腸或膽汁引流後口服投予 CA,家兔之血漿中濃度經時變化仍呈現雙峰或多峰之吸收現象,及 CA 由膽汁排除的比例小於 0.1 (%) 的結果,顯示 CA 口服投予家兔後,血漿中 CA 濃度經時變化皆呈現雙峰或多峰之吸收現象的原因,應與 CA 本身的水溶解度有關,而與胃排空不規則及腸肝循環無關。將 AUC 或 Cmax 對劑量作圖,皆可得一良好之線性相關 (Cmax = 0.00007 x dose + 0.0475, r = 0.741, p<0.05;AUC = 0.00840 x dose + 5.69, r = 0.909, p<0.05),顯示 CA 口服吸收呈現線性藥物動態學 (linear pharmacokinetics)。CA 以原型由尿中排出的比率平均為 23 (%),且大部份的 CA 約在 8 小時內即由尿中排出。腹腔注射投予 CA (10mg/kg),血漿中濃度經時變化亦呈現雙峰之吸收現象,生體可用率為 0.729 +/- 0.118,CA 以原型由尿中排出的比率為 43.8 +/- 8.3 (%),而大部分的 CA 在 2 小時內即由尿中排出。胃腸道對CA的吸收比例為 0.530+/- 0.094;肝抽提率為 0.271 +/- 0.118,而胃腸道對CA的抽提率為 0.470+/- 0.094;另外,胃腸道對 CA 的抽提率對肝抽提率的比例約為 2.50,顯示 CA 口服投予後大部份被胃腸道所清除,而非被肝臟清除。以酵素水解探討尿液中 CA 與 glucuronic acid (CA-G) 及 sulfate (CA-S) 進行抱合反應的生成比例,由靜脈注射 5 或 10 mg/kg 的 CA 後,所測得 CA 的比例,分別為 73.8 +/- 7.6 和 71.8 +/- 7.1 (%),顯示 CA 約有近 30 (%) 為其它代謝物。而靜脈注射 10 mg/kg 所得 CA-G 平均為 6.57 +/- 2.00 (%) 比 5 mg/kg 為 3.41+/- 0.80 (%) 多,且有顯著差異,顯示 CA 代謝成 CA-G 具劑量依存的現象 (dose dependent)。另外,CA-G 的生成比例與投予劑量間有一線性關係 (Y = 0.302 X — 0.0632, r = 0.718, p<0.05);靜脈注射 5 mg/kg 所得 CA-G (3.41+/- 0.80 %) 比 CA-S (7.06 +/- 2.08 %) 少,且有顯著差異;但靜脈注射 10 mg/kg 所得 CA-G (6.57 +/- 2.00 %) 比 CA-S (5.30 +/- 1.53 %) 多,不過並無顯著差異。顯示,sulfation 的酵素 (PAPS transferase) 對 CA 具較高的親和性 (affinity),但飽和性 (capacity) 較低;相反的,glucuronidation 的酵素 (UDP glucuronyl-transferase) 對 CA 具較低的親和性,但飽和性 (capacity) 較高。口服投予 5 或 10 mg/kg 的 CA 後,以酵素水解所測得 CA 的比例分別為 37.1 +/- 7.4 和 35.6 +/- 5.7 (%),顯示 CA 口服投予至少約有近 35 (%) 的投予劑量為家兔所吸收。而口服投予 10 mg/kg 所得 CA-G 為 8.05 +/- 2.73 (%) 比 5 mg/kg 為 3.68 +/- 1.23 (%) 多,且有顯著差異。顯示口服投予與靜脈注射一樣, CA 代謝成 CA-G 亦具劑量依存的現象 (dose dependent),且 CA-G 的生成比例與投予劑量間亦有一線性關係存在 (Y = 0.507 X — 3.33, r = 0.860, p<0.05)。而口服投予 10 mg/kg 所得 CA-S 為 5.27  2.12 (%) 比 5 mg/kg 為 10.1+/- 3.6 (%) 少,且有顯著差異。分別比較同劑量下,CA-G 與 CA-S 的比例,口服投予 5 mg/kg 所得 CA-G (3.68+/- 1.23 %) 比 CA-S (10.1 +/- 3.6 %) 少,且有顯著差異;另外,口服投予 10 mg/kg 所得 CA-G (8.05 +/- 2.73 %) 比 CA-S (5.27+/- 2.12 %) 多,亦有顯著差異。如同靜脈注射的結果,顯示 CA 口服投予,低劑量下,亦先進行 sulfation,故 glucuronidation 比例較低;但隨劑量增加, sulfation 飽和,相對地,由 glucuronidation 取代。另外,口服投予後所得CA-G 或 CA-S 與原型排除的相對比例皆比腹腔注射後所得的相對比例高約 3 倍,顯示無論是進行 glucuronidation 或 sulfation,CA 在腸壁進行 conjugation 代謝比肝臟容易。全血測得之的 CA 濃度對血漿 CA 濃度的比值 (blood-to-plasma ratio) 在所測得的血漿CA濃度範圍內維持一穩定的比值;而 RBC 內 CA 濃度對血漿 CA 濃度的比值 (RBC-to-plasma ratio) 也很穩定,同樣不受血漿中 CA 濃度變化所影響。顯示 CA 會分佈至RBC,但其分佈及與血球結合並不受濃度的影響。Cblood/Cplasma 所得之平均值為 0.710 +/- 0.058。以 LC/MS/MS 快速篩檢尿中的代謝物,共有七個,分別為 isoferulic acid 、CA 進行 sulfation 代謝的產物 (CA-4-O-sulfate 及CA-3-O-sulfate),或 glucuronidation 代謝的產物 (CA-4-O-glucuronide)。另外,亦可看到 CA 甲基化且又進行 sulfation 代謝 (CA-4-O-methyl, 3-O-sulfate),或甲基化且又進行 glucuronidation 代謝的產物 (Glucuronyl 3-O-methyl-CA 及 Glucuronyl 4-O-methyl-CA)。而血漿中測得的代謝物共有五個,分別為甲基化代謝物 isoferulic acid、ferulic acid、CA-4-O-sulfate、CA-3-O-sulfate 及 esculetin。膽汁中測到 3 個代謝物,皆為CA 進行sulfation 代謝的產物 (CA-4-O-sulfate、CA-3-O-sulfate 及CA-4-O-methyl, 3-O-sulfate)。由 CA 行甲基化代謝後,再進行二次代謝 glucuronidation 時,glucuronidation 的位置為 CA 的酸基 (Glucuronyl 3-O-methyl-CA及 Glucuronyl 4-O-methyl-CA) 及 CA 進行 glucuronidation 的代謝位置為 4-hydroxy 時 (CA-4-O-glucuronide) 未見此代謝物同時有甲基化代謝,加上 CA 行甲基化代謝又進行 sulfation 代謝的產物亦只有一個 (CA-4-O-methyl, 3-O-sulfate),顯示 CA glucuronidation 或 sulfation 與甲基化代謝間具選擇性。另外,膽汁與血漿中所測得的代謝物皆為進行 sulfation 的代謝物,無 glucuronidation 的代謝物,與大白鼠主要為 glucuronidation 不同;不過,與人及狗血漿中測得其他藥物抱合代謝 (主要亦為sulfation) 的結果相似,顯示 CA 的代謝有物種的差異。
Pharmacokinetics and metabolism of caffeic acid (3,4-dihydrocinnamic acid, CA) were studied using rabbits as animal model. To the beginning, linear pharmacokinetics of CA was studied. Three different doses (5, 10 and 25 mg/kg) were administered intravenously (IV) to six rabbits, respectively. The concentration-time profiles for CA could be fitted by a two compartment model for each dose. The results showed that total body clearance (CLtotal) and elimination rate constant from the central compartment (k10) after a 5 mg/kg dose were greater than those after the other two doses. Furthermore, the *-half life and mean residence time (MRT) after a 5 mg/kg dose were less than after the other doses. The AUC value increased linearly with dose within the range of 10 mg/kg to 25 mg/kg. Most of the unchanged caffeic acid was excreted in the urine within 2 hours. The percentages of unchanged caffeic acid excreted in the urine were 63.3, 60.0 and 55.4 (%) after doses of 5, 10 and 25 mg/kg, respectively, which was not significantly different. However, significant differences in the renal clearances (CLr) and renal excretion rate constant were observed with a 5 mg/kg dose compared to the other doses. On the other hand, nonrenal clearances (CLnr) and nonrenal excretion rate constants showed no dose related differences. The differences observed in CLtotal, k10, *-half life and MRT between a 5 mg/kg dose and the other doses could be explained on the basis of the differences in renal clearance and renal excretion rate constant. After oral administration CA to rabbits, the concentration-time profiles of caffeic acid showed a double peak phenomenon. The pharmacokinetic parameters of the CLtotal, CLr, CLnr, and absorption phase half-life showed no significant differences for each dose after oral administration. These results indicated that CA showed linear pharmacokinetics after oral administration in the dose range of 5and 25 mg/kg. The results also showed that the values of the AUC and Cmax increased linearly with a dose in the range of 5 mg/kg to 25 mg/kg. The absolute bioavailability values of CA were 0.364, 0.379 and 0.402, and the percentages of unchanged CA excreted in the urine were 23.2, 22.7 and 22.0 (%) after doses of 5, 10 and 25 mg/kg, respectively. There were no significant differences obtained for absolute bioavailability and also for percentages of unchanged CA excreted in the urine in these dose ranges. After intraperitoneal administration (IP, 10 mg/kg), the concentration-time profiles of CA also showed a double peak phenomenon. The absolute bioavailability value of CA were 0.729 and the percentages of unchanged CA excreted in the urine were 43.8 (%). The calculated gastrointestinal (GI) and hepatic extraction were 0.470 and 0.271, respectively. Ratio of GI to hepatic extraction was 2.5 and showed GI eliminated CA more active than liver. Glucuronidation (CA-G) and sulfation (CA-S) of CA excreted in rabbit urine were determined enzymatically. The results showed that percentages of total CA (unchanged CA + CA-G + CA-S) excreted in the urine were 73.8 and 71.8 (%) after IV dosing (5 & 10 mg/kg), respectively. After oral dosing (5 & 10 mg/kg), percentages of total CA excreted in the urine was 37.1% and 35.6 (%), respectively. The percentages of conjugation for CA (CA-conjugation) were 10.5 and 11.9 (%), CA-G were 3.41 and 6.57 (%), and CA-S were 7.06 and 5.30 (%) after IV administration 5 and 10 mg/kg dose, respectively. After oral administration, the percentages of CA-conjugation were 13.8 and 13.3 (%), CA-G were 3.68 and 8.05 (%), and CA-S were 10.1 and 5.27 (%) for 5 and 10 mg/kg dose, respectively. There were no significant differences for percentages of total and conjugation CA excreted in the urine, for both doses neither IV nor oral. In addition, there were no significant differences for percentages of CA-conjugation excreted in the urine between administration routes for each dose. However, the percentages of CA-G showed significant differences between doses, not only for IV administration but also for oral administration. There was a linear relationship between the percentages of CA-G and doses for both IV and oral administration. It indicated that glucuronidation of CA showed dose-dependent. The ratio of CA-G/CA-S increased with dose and showed significant differences between doses for both IV and oral administration. The results indicated that sulfation of CA showed high affinity and low capacity, and glucuronidation of CA showed low affinity and high capacity, not only after IV but also after oral administration. The relative fraction of CA-conjugation/unchanged CA for oral administration was greater than that after IP administration and showed significant differences. The result indicated that the contribution of GI in CA conjugation was higher than that of liver. After IV administration of CA at dose 25 mg/kg, there was a blood to plasma concentration ratio for CA concentration at 0.710. The blood to plasma concentration ratio was concentration independent and erythrocyte to plasma concentration ratio, too. After intraduodenal administration or oral administration following bile duct cannulation, the concentration-time profiles of CA showed a double peak phenomenon. The biliary excretion of CA was less than 0.1 %. These results indicated that the reasons for concentration-time profiles of CA showed a double peak phenomenon after oral administration were not resulting from gastric emptying variability and enterohepatic circulation. However, this was likely due to the poor water solubility of CA. The metabolic pathways of CA were investigated with LC/MS/MS. It showed the sulfation of CA was predominant both in rabbit plasma and bile. Isoferulic acid and ferulic acid, methylation of CA, were found in plasma. In addition, a phase I oxidative metabolite, esculetin, was found in plasma but not in urine and bile. In urine, there were 7 metabolites identified. They included methylation of CA at 4-hydroxy group (isoferulic acid), sulfation at 3- or 4-hydroxy group of CA (CA-3-O-sulfate and CA-4-O-sulfate), methylation at 4-hydroxy group and sulfation at 3-hydroxy group (CA-4-O-methyl, 3-O-sulfate), glucuronidation at 4-hydroxy group (CA-4-O-glucuronide), and methylation either 3- or 4-hydroxy group and then glucuronidation at carboxylic acid group (Glucuronyl 3-O-methyl-CA and Glucuronyl 4-O-methyl-CA).
封面
目錄
Figure
Table
中文摘要
英文摘要
壹.緒論
貳.實驗材料與方法
一.試藥與材料
二.儀器
三.試藥配製
1.Caffeic acid(CA)溶液之配製
2.Triamterene溶液之配製
3.Metoclopramide溶液之配製
4.酵素溶液之配製
5.過氯酸溶液(HC1O4)之配製
四.分析條件
1.定量血漿中Caffeic acid濃度的分析條件
2.定量血液及尿液中Caffeic acid濃度的分析條件
五.檢品的製備方法(sample preparation)
1.血漿檢品
2.血液檢品
3.尿液檢品
4.酵素水解反應
六.動物試驗
1.試驗動物選擇
2.試驗所需用具的準備
3.Caffeic acid試驗溶液之配備
4.靜脈注射給藥(Intravenous injection.IV)
5.口服給藥(Oral administration,Oral)
6.腹腔注射給藥(Intraperitoneal administration,IP)
7.十二指腸給藥(Intraduodeual,ID)
8.膽汁引流
八.以LC/MS/MS研究CA的代謝
1.檢品的取得
2.檢品的製備
3.LC/MS/MS分析條件
參.結果與討論
一.不同劑量之CA之靜脈注射投予家兔之藥物動態學研究
1-1由血漿CA濃度所得的藥物動態學參數
1-2CA由尿中排除的結果
1-3討論
二.不同劑量之CA以口服投予家兔之藥物動態學及生體可用率研究
2-1由血漿CA濃度所得的藥物動態學參數
2-2CA由尿中排除的結果
2-3討論
三.CA以腹腔注射投予家兔之藥物動態學及生體可用率研究
3-1由血漿CA濃度所得的藥物動態學參數
3-2CA由尿中排除的結果
3-3CA以靜脈注射、口服與腹腔注射投予家兔之藥物動態學的比較
3-4討論
四.CA與Glucuronic acid 及Sulfate進行抱合反應代謝的研究
4-1.CA與Glucuronic acid 及Sulfuric acid進行抱合反應的結果
4-2討論
五.CA投予經膽汁引流之家兔及將CA投予家兔十二指腸的藥物動態學研究
5-1CA投予家兔十二指腸的結果
5-2膽汁引流的結果
5-3討論
六.CA以靜脈注射,全血之藥物動態學研究
6-1由全血CA濃度所得的藥物動態學參數
6-2討論
七.以LC/MS/MS研究CA在家兔體內的代謝
7-1標準品的mass1(MS1)及mass2(MS2)圖譜
7-2尿夜檢品的MS1及MS2圖譜
7-3血漿檢品的MS圖譜
7-4膽汁檢品的MS圖譜
7-5討論
肆.結論
伍.參考文獻
1. M. Gumbleton and W. Sneader, Pharmacokineticconsiderations in rational drug design. Clin. Pharmacokinet., 26, 161 - 168 (1994).
2. M. J. Humphrey and D. A. Smith, Role of metabolism and Pharmacokineticstudies in the discovery of new drugs - present and future perspectives. Xenobiotica, 22, 743 - 755 (1992).
3. J. M. Fromsen, Perspectives in pharmacokinetics: A phased approach to drug development. J. Pharmacokinet. Biopharm., 17, 509 - 521 (1989).
4. Y. Kimura, H. Okuda, T. Okuda, T. Hatano, I. Agata and S. Arichi: Studies on the activities of tannins and related compounds from medicinal plants and drugs. VI. Inhibitory effects of caffeoylquinic acids on histamine release from rat peritoneal mast cells; Chem. Pharm. Bull., 33, 690-696 (1985).
5. Y. Kimura, H. Okuda, T. Okuda, T. Hatano, I. Agata and S. Arichi, Studies on the activities of tannins and related compounds from medicinal plants and drugs. VII. effects of extracts of leaves of artemisia species, and caffeic acid and chlorogenic acid on lipid metabolic injury in rats fed peroxidized oil. Chem. Pharm. Bull., 33, 2028 - 2034 (1985).
6. T. Okuyama, S. Shibata, M. Hoson, T. Kawada, H. Osada and T. Noguchi: Effects of oriental plant drugs on platelet aggregation; III. Effects of chinese drug "Xiebai" on human platelet aggregation; Planta Med., 52: 171-175 (1986).
7. T. Hatano, T. Yasuhara, R. Yoshihara, I. Agata, T. Noro and T. Okuda, Effects of interaction of tannins with co-existing substance. VII. Inhibitory effects of tannins and related polyphenols on xanthine oxidase. Chem. Pharm. Bull., 38, 1224-1229 (1990).
8. M.-T. Huang, R. C. Smart, C.-Q. Wong and A. H. Conney, Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-o-tetradecanoylphorbol-13-acetate. Cancer Res., 48, 5941-5946 (1988).
9. W.-C. Chang and F.-L. Hsu, Inhibition of platelet activation and endothelial cell injury by polyphenolic compounds isolated from Lonicera japonica Thumb. Pg. Lt. Essen. fatty acid, 45, 307-312 (1992).
10. R. Ficarra, P. Ficarra, S. Tommasini, ML. Calabro, S. Ragusa, R. Barbera and A. Rapisarda, Leaf extracts of some Cordia species: analgesic and anti-inflammatory activities as well as their chromatographic analysis. Farmaco., 50, 245-56 (1995).
11. O. S. Sohn, A. Surace, E. S. Fiala, J. P. Richie Jr., S. Colosimo, E. Zang and J. H. Weisburger, Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica, 24, 119-127 (1994).
12. S. G. Khan, S. K. Katiyar, R. Agarwal and H. Mukhtar, Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res., 52, 4050-4052 (1992).
13. S. K. Katiyar, R. Agarwal, M. T. Zain and H. Mukhtar, Protection against N-nitrosodiethylamine and benzo[a]pyrene induced forestomach and lung tumorigenesis in A/J mice by green tea. Carcinogenesis, 14, 849-855 (1993).
14. A. L. Blum, W. Doelle, K. Kortum, P. Peter, G. Strohmeyer, P. Berthet, H. Goebell, S. Pelloni, H. Poulsen and N. Tygstrup, Treatment of acute viral hepatitis wit (+)-cyanidanol-3, Lancet, 3, 1153-1155 (1977).
15. P. Morazzoni, A. Montalbetti, S. Malandrino and G. Pifferi, Comparative pharmacokinetics of silipide and silymarin in rats. Eur. J Drug Metab. Pharmacokinet., 18, 289-297 (1993).
16. R. Weyhenmeyer, H. Mascher and J. Birkmayer, Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. Int. J Clin. Pharmacol. Ther. Toxicol., 30, 134-138 (1992).
17. N. P. Das, Studies on flavonoid metabolism, absorption and metabolism of (+)-catechin in man, Biochem. Pharmacol., 20, 3435-3445 (1971).
1. 李岳霖, Pharmacokinetic study of (+)-catechin in rabbits. Master thesis (1994).
19. Y. Kimura and H. Okuda, Studies on the activities of tannins and related compounds, X. Effects of caffeetannins and related compounds on arachidonate metabolism in human polymorphonuclear leukocytes. J. Natural Products, 50, 392-399 (1987).
20. Y. Koshihara, T. Neichi, S. Murota, A. Lao, Y. Fujimoto, T. Tatsuno, Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochimica et Biophysica Acta, 792, 92-97 (1984).
21. C. G. Fraga, V. S. Martino, G. E. Ferraro, J. D. Coussio and A. Boveris, Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem. Pharmacol., 36, 717-720 (1987).
22. P. Basnet, K. Matsushige, K. Hase, S. Kadota and T. Namba, Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol. Pharm. Bull., 19, 1479-1484 (1996 ).
23. V. Perez-Alvarez, R. A. Bobadilla-Lugo, P. Muriel, L. Favari and C. Villanueva-Lopez, Effects of leukotriene synthesis inhibition on acute liver damage induced by carbon tetrachloride. Pharmacol., 47, 330-336 (1993).
24. W. -S. Chang, Y. -H. Chang, F. -J. Lu and H. -C. Chiang, Inhibitory effects of phenolics on xanthine oxidase. Anticancer Res., 14, 501-506 (1994).
25. Y. Kono, K. Kobayashi, S. Tagawa, K. Adachi, A. Ueda, Y. Sawa and H. Shibata, Antioxidant activity of polyphenolics in diets. Rate constants of reactions of chlorogenic acid and caffeic acid with reactive species of oxygen and nitrogen. Biochim. et Biophy. Acta. 1335, 335-42 (1997).
26. M. Nardini, M. D''Aquino, G. Tomassi, V. Gentili, M. Di Felice and C. Scaccini, Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Rad. Biol. Med., 19, 541-52 (1995).
27. J. A. Laranjinha, O. Vieira, V. Madeira and L. M. Almeida, Two related phenolic antioxidants with opposite effects on vitamin E content in low density lipoproteins oxidized by ferrylmyoglobin: consumption vs regeneration. Arch. Biochem. Biophy. 323, 373-81 (1995).
28. J. A. Laranjinha, L. M. Almeida and V. M. Madeira, Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation. Biochem. Pharm., 48, 487-94 (1994).
29. S. Toda, M. Kumura and M. Ohnishi, Effects of phenolcarboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med., 57, 8-10 (1991).
30. M. -T. Huang, R. C. Smart, C. -Q. Wong and A. H. Conney, Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-o-tetradecanoylphorbol-13-acetate. Cancer Res., 48, 5941-5946 (1988).
31. R. H. San and R. I. Chan, Inhibitory effect of phenolic compounds on aflatoxin B1 metabolism and induced mutagenesis. Mut. Res., 177, 229-39 (1987).
32. V. S. Aboobaker, A. D. Balgi and R. K. Bhattacharya, In vivo effect of dietary factors on the molecular action of aflatoxin B1: role of non-nutrient phenolic compounds on the catalytic activity of liver fractions, In Vivo, 8, 1095-1098 (1994).
33. A. J. Alldrick, J. Flynn and I. R. Rowland, Effects of plant-derived flavonoids and polyphenolic acids on the activity of mutagens from cooked food. Mut. Res., 163, 225-32, 1986.
34. L. W. Wattenberg, J. B. Coccia and L. K. Lam, Inhibitory effects of phenolic compounds on benzo(a)pyrene-induced neoplasia. Cancer Res., 40, 2820-2823 (1980).
35. J. Alanko, A. Riutta, H. Vapaatalo and I. Mucha, Catecholamines decrease leukotriene B4 and increase thromboxane B2 synthesis in A23187-stimulated human whole blood. Prostaglandins, 42, 279-87 (1991).
36. Y. F. Chen, H. Y. Tsai and T. S. Wu, Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med., 61, 2-8 (1995).
37. M. A. Rosei, Inhibition of Dopa decarboxylase by caffeic acid and related compounds: structure-activity relationships. Pharm. Res. Comm., 19, 663-671 (1987).
38. Y. Kumada, H. Naganawa, H. Iinuma, M. Matsuzaki and T. Takeuchi, Dehydrodicaffeic acid dilactone, an inhibitor of catechol-O-methyl transferase. J. Antibiot., 29, 882-889 (1976).
39. E. Strehl, R. Volpert and E. F. Elstner, Biochemical activities of propolis-extracts. III. Inhibition of dihydrofolate reductase. J. Biosci., 49, 39-43 (1994).
40. M. M. Manson, H. W. Ball, M. C. Barrett, H. L. Clark, D. J. Judah, G. Williamson and G. E. Neal, Mechanism of action of dietary chemoprotective agents in rat liver: induction of phase I and II drug metabolizing enzymes and aflatoxin B1 metabolism. Carcinogen., 18, 1729-1738 (1997).
41. D. D. Kitts and A. N. Wijewickreme, Effect of dietary caffeic and chlorogenic acids on in vivo xenobiotic enzyme systems. Plant Foods Human Nut., 45, 287-298 (1994).
42. M. John, H. G. Gumbinger and H. Winterhoff, Oxidation products of caffeic acid as model substances for the antigonadotropic activity of plant extracts. Planta Med., 56, 14-18 (1990).
43. A. Nahrstedt, M. Albrecht, V. Wray, H. G. Gumbinger, M. John, H. Winterhoff and F. H. Kemper, Structures of compounds with antigonadotropic activity obtained by in vitro oxidation of caffeic acid. Planta Med., 56 395 - 398 (1990).
44. H. Cho, M. Ueda, M. Tamaoka, M. Hamaguchi, K. Aisaka, Y. Kiso, T. Inoue, R. Ogino, T. Tatsuoka, T. Ishihara, T. Nagachi, I. Morita and S. Murota, Caffeic acid derivatives: Extremely potent inhibitors of 12-lipoxygenase. J. Med. Chem., 34, 1503-1505 (1991).
45. S. Inayama, K. Harimaya, H. Hori, T. Ohkura, T. Kawamata, M. Hikichi and T. Yokokura, Studies on non-sequiterpenoid constituents of Gaillardia pulchella. II. Less lipophilic substances, methyl caffeate as an antitumor catecholic, Chem. Pharm. Bull,. 32, 1135-1141 (1984).
46. M. Amoros, E. Lurton, J. Boustie, L. Girre, F. Sauvager and M. Cormier, Comparison of the anti-herpes simplex virus activities of propolis and 3-methyl-but-2-enyl caffeate. J. Nat. Products, 57, 644-7 (1994).
47. K. Frenkel, H. Wei, R. Ye J. Bhimani, J. A. Zadunaisky, M. T. Huang, T. Ferraro, A. H. Conney and D. Grunberger, Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester. Cancer Res., 53, 1255-1261 (1993).
48. I. Saracoglu, M. Inoue, I. Calis and Y. Ogihara, Studies on constituents with cytotoxic and cytostatic activity of two Turkish medicinal plants Phlomis armeniaca and Scutellaria salviifolia. Biol. Pharm. Bull., 18, 1396-1400 (1995).
49. A. K. Jaiswal, R. Venugopal, J. Mucha, A. M. Carothers and D. Grunberger, Caffeic acid phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD(P)H:quinone oxidoreductase (NQO1) gene. Cancer Res., 57, 440-446 (1997).
50. M. R. Fesen, Y. Pommier, F. Leteurtre, S. Hiroguchi, J. Yung and K. W. Kohn, Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacol., 48, 595-608 (1994).
51. A. Mazumder, S. Wang, N. Neamati, M. Nicklaus, S. Sunder, J. Chen, G. W. Milne, W. G. Rice, T. R. Burke Jr. and Y. Pommier, Antiretroviral agents as inhibitors of both human immunodeficiency virus type 1 integrase and protease. J. Med. Chem., 39, 2472-2481 (1996).
52. T. R. Burke Jr. M. R. Fesen, A. Mazumder, J. Wang, A. M. Carothers, D. Grunberger, J. Driscoll, K. Kohn and Y. Pommier Y, Hydroxylated aromatic inhibitors of HIV-1 integrase. J. Med. Chem., 38, 4171-4178 (1995).
53. E. Sondheimer, On the distribution of caffeic acid and the chlorogenic acid isomers in plants. Arch. Biochem. Biophys., 74, 1131-1138 (1958).
54. E. Haslam, Plant polyphenols: vegetable tannins revisited; Cambridge university press, New York, pp 16, 1989.
55. V. A. Fung, T. P. Cameron, T. J. Hughes, P. E. Kirby and V. C. Dunkel: Mutagenic activity of some coffee flavor ingredients; Mutation Research, 204, 219-228 (1988).
56. H.Y. Hsu, Y.P. Chen and M. Hang: The chemical constituents of oriental herbs Vol. I , Oriental Healing Arts Institute, Taipei, pp 264, 1982.
57. S. Budavari: The Merck Index: an encyclopedia of chemicals, drugs, and biologicals, 11th ed. Merck & Co., Inc. press, New Jersey; pp 248, 1989.
58. M. John, H. G. Gumbinger and H. Winterhoff, Oxidation products of caffeic acid as model substances for the antigonadotropic activity of plant extracts. Planta Med., 56, 14-18 (1990).
59. J. J. L. Cilliers and V. L. Singleton, Characterization of the products of nonenzymic autoxidative phenolic reactions in a caffeic acid model system. J. Agric. Food Chem., 39, 1298-1303 (1991).
60. J. J. L. Cilliers and V. L. Singleton, Nonenzymic autoxidative phenolic browning reactions in a caffeic acid model system. J. Agric. Food Chem., 37, 890-896 (1989).
61. J. J. L. Cilliers and V. L. Singleton, Caffeic acid autoxidation and the effects of thiols. J. Agric. Food Chem., 38, 1789-1796 (1990).
1. 康鳳蓮, Pharmacokinetic study of caffeic acid and its ester in rabbits. Master thesis (1994).
63. Y.-S. Uang, F.-L. Kang and K.-Y. Hsu, Determination of caffeic acid in rabbit plasma by high-performance liquid chromatography. J. Chromatogr. B, 673, 43-49 (1995).
64. J. Westendorf and G. Czok, Studies on the pharmacokinetics of C-14 cinnamic-acid derivatives in rats. Zeitschrift fur Ernahrungswissenschaft, 17, 26-36 (1978).
65. J. Westendorf and G. Czok, Biliary excretion of choleretically active cinnamic acid derivatives in the rat. Zeitschrift fur Ernahrungswissenschaft, 22, 255-270 (1983).
66. H. G. Gumbinger, U. Vahlensieck and H. Winterhoff, Metabolism of caffeic acid in the isolated perfused rat liver. Planta Med., 59, 491-493 (1993).
67. J. Camarasa, E. Escubedo and T. Adzet, Pharmacokinetics of caffeic acid in rats by a high-performanceliquid chromatography method. J. Pharm. Biomed. Anal., 6, 503-510 (1988).
68. C. Shumaker, Pkcalc: a basic interactive computer program for statistical and pharmacokinetic analysis of data. Drug Metab. Rev., 17, 331-348 (1986).
69. M. Metzier and D. L. Weiner, PCNONLIN User Guide, Version 4.0, Statistical Consultants Inc., KY, 1992.
70. K. Yamaoka, T. Nakagawa and T. Uno, Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokin. Biopharm., 6, 165-175 (1978).
71. A. Deslandes, J. F. Westphal,, J. H. Trouvin and R. Farinotti, Adaptive computer program for determination of absorption profiles by numericcal deconvolution: application to amoxicillin absorption. J. Pharm. Sci., 81, 802-807 (1992).
72. M. Gibaldi and D. Perrie, Pharmacokinetics, Dekker, New York, 1982, pp.45-88.
73. J. H. Zar, Biostatistical analysis, 2nd ed., Prentice Hall, New Jersey, 1984, pp 206-235.
74. J. Kawakami, Y. Yamamura, T. Santa, H. Kotaki, K. Uchino, Y. Sawada and T. Iga, Kinetic analysis of Glycyrrhetic acid, an active metabolite of Glycyrrhizin, in rats: Role of enterohepatic circulation. J. Pharm. Sci., 82, 301-305 (1993).
75. R. L. Oberle and G. L. Amidon, The inference of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine. J. Pharmacokinet. Biopharm., 15, 529 — 545 (1987).
76. M. F. Williams, G. E. Dukes, W. Heizer, Y. —H. Han, D. J. Hermann, T. Lampkin and L. J. Hak, Influence of gastrointestinal site of drug delivery on the absorption characteristics of ranitidine. Pharm. Res., 9, 1190 —1194 (1992).
77. Y. -H. Yeom, R. P. Remmel, S.-H. Huang, M. Hua, R. Vince and C. L. Zimmerman, Pharmacokinetics and bioavailability of carbovir, a carbocyclic nucleoside active against human immunodeficiency virus, in rats. Antimicrob. Agents Chemother., 33, 171-175 (1989).
78. A. B. Suttle, G. M. Pollack and K. L. R. Brouwer, Use of a pharmacokinetic model incorporating discontinuous gastrointestinal absorption to examine the occurrence of double peaks in oral concentration-time profiles. Pharm. Res., 9, 350-356 (1992).
79. R. Suverkrup, Discontinuous absorption processes in pharmacokinetic models. J. Pharm. Sci., 68, 1395 — 1400 (1979).
80. C. D. Klaassen and J. B. Watkins III, Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacological rev., 36, 1-67 (1984).
81. Y. Hashimoto, H. Sasa, M. Shimomura, and K. Inui, Effects of intestinal and hepatic metabolism on the bioavailability of tacrolimus in rats. Pharm. Res., 15, 1609 — 1613 (1998).
82. G. J. Mulder, Conjugation reactions in drug metabolism. Taylor & Francis Ltd, 1990, pp.41-49.
83. G. J. Mulder, Conjugation reactions in drug metabolism. Taylor & Francis Ltd, 1990, pp.51-105.
84. G. J. Mulder, Conjugation reactions in drug metabolism. Taylor & Francis Ltd, 1990, pp.107-161.
85. M. E. Morris, V. Yuen, B. K. Tang and K. S. Pang, Competing pathways in drug metabolism. I. Effect of input concentration on the conjugation of gentisamide in the once-through in situ perfused rat liver preparation. J. Pharmacol. Exp. Ther., 245, 614 — 624 (1988).
86. K. W. Bock and D. Winne, Glucuronidation of 1-naphthol in the rat intestinal loop. Biochem. Pharmacol., 24, 859 — 862 (1975).
87. P. Wollenberg, V. Ullrich and W. Rummel, Conjugation of 1-naphthol and transport of 1-naphthol-conjugates in the vascularly perfused small intestine of the mouse. Biochem. Pharmacol., 32, 2103 — 2107 (1983).
88. G. J. Mulder, S. Brouwer and E. Scholtens, High-rate intestinal conjugation of 4-methyl-umbelliferone during intravenous infusion in the rat in vivo. Biochem. Pharmacol., 33, 2341 — 2344 (1984).
89. G. J. Mulder, S. Brouwer, J. G. Weitering, E. Scholtens and K. S. Pang, Glucuronidation and sulfation in the rat in vivo: The role of the liver and the intestine in the in vivo clearance of 4-methylumbelliferone. Biochem. Pharmacol., 34, 1325 — 1329 (1985).
90. A. SJ. Koster, A. C. Frankhuijzen-Sierevogel and J. Noordhoek, Distribution of glucuronidation capacity (1-naphthol and morphine) along the rat intestine. Biochem. Pharmacol., 34, 3527 — 3532 (1985).
91. J. Brès, F. Bressolle, Pharmacokinetics of sulpiride in human after intravenous and intramuscular administration. J. Pharm. Sci., 80, 1119 — 1122 (1991).
92. H. L. Fleuren and J. M. van Rossum, Nonlinear relationship between plasma and red blood cell pharmacokinetics of chlorthalidone in man. J. Pharmacokinet. Biopharm., 5, 359 — 375 (1977).
93. D. Kurata and G. R. Wilkinson, Ethrocyte uptake and plasma binding of diphenylhydantoin. Clin. Pharmacol. Ther., 16, 355 — 362 (1974).
94. C. I. Colino, A. G. Turino, A. S. Navarro and J. M. Lanao, A comparative study of ofloxacin and ciprofloxacin ethrocyte distribution. Bipharm. Drug Disposit., 19, 71 — 77 (1998).
95. M. Rowland and T. N. Tozer, Clinical pharmacokinetics: Concepts and applications, 3rd ed., Williams & Wilkins, 1995, pp.156 — 183.
96. T. Adzet, J. Camarasa, E. Escubedo and M. Merlos, In vitro study of caffeic acid-bovine serum albumin interaction. Eur J Drug Metab Pharmacokinet 13: 11- 14 (1988).
97. P.-C. Wang, N. T. Buu, O. Kuchel and J. Genest, Conjugation patterns of endogenous plasma catecholamines in human and rat. J. Lab. Clin. Med., 101, 141 — 151 (1983).
98. M. Oka, Y. Ishimura, T. Tsunematsu, K. Minakuchi, T. Ohuchi and K. Matsumoto, Effects of administration of dopamine and L-dopa to dogs on their plasma level of dopamine sulfate. Biochem. Pharmacol., 36, 3205 — 3208 (1987).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top