跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林品宏
研究生(外文):Pin-Haung Lin
論文名稱:以水熱法在不鏽鋼基板上成長磷酸鈣陶瓷鍍層
論文名稱(外文):Formation of Calcium Phosphate Ceramic Coating on Stainless Steel Substrate by hydrothermal method
指導教授:徐堯山
指導教授(外文):Yao-shan Hsu
學位類別:碩士
校院名稱:大同工學院
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:98
中文關鍵詞:水熱法氫氧基碄灰石磷酸鈣陶瓷鍍層
外文關鍵詞:hydrothermal methodhydroxyapatitecalcium phosphateceramic coating
相關次數:
  • 被引用被引用:4
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
改良式的水熱法被用來合成磷酸鹽的粉末及鍍層.這種由我們實驗室自行設計的水熱合成法,和傳統的水熱法比較起來,在反應槽內,改良式的水熱法有較大的溫度差.因此兩種方式的水熱法的反應機制也有相當大的差異.
在此系統中,粉末合成的適當條件是在300℃持溫24小時.主要的成份相包括CaHPO4,Ca(OH )2,Ca2P2O7,和Ca10(PO4)6(OH)2.在較高的處理溫度及較長的持溫時間下,反應的進行較為完全.
當起始成份的鈣磷比(Ca/P)較低時,可以得到Ca2P2O7.當Ca/P比值逐漸增加,主要的成份相變為CaHPO4.Hydroxyapatite在Ca/P繼續增加後可以產生出來.但是當Ca/P的比值持續再增加,Hydroxyapatite的波峰在XRD圖形中的強度並不會繼續增強,只有Ca(OH)2的波峰強度會增強.在反應物內加入較多的磷酸,也就是降低系統的pH值,Hydroxyapatite可以較容易獲得.
在不鏽鋼基板的表面上合成磷酸鹽陶瓷鍍層的過程中,主要是被表面反應物的濃度以及表面的溫度差所影響.整個製程主要可以分為幾個階段來進行:首先,基板的表面會被磷酸所改質,然後部份粉末隨著氣相被輸送到基板處並附著在基板上.經過一段時間後,這些附著在基板上的粉末逐漸變成晶格中的一部份,經過成核長晶的過程後,最後就可以在基板上得到鍍層以及一些晶體.
鍍層的主要成份是綠色的磷酸鐵氫氧化物(Fex(PO4)y(OH)z).在實驗中得到的晶體主要是包括JCPDS #44-762 Ca2P2O7.H2O,JCPDS #9-348
Ca3(PO4)2 以及JCPDS #9-80 CaHPO4

A modified hydrothermal method was used to synthesize calcium phosphate powders and coatings. This modified hydrothermal method, that designed by our laboratory, have larger thermal gradient (△T ) in the reaction chamber than the traditional autoclave, and the reactive mechanisms are quite different between these two methods.
The suitable condition for the powder synthesis is at 300℃ for 24hr, and the phases of the calcium phosphate powders synthesized by the hydrothermal method mainly include CaHPO4,
Ca(OH )2, Ca2P2O7, and Ca10(PO4)6(OH)2. With higher temperature and longer heating time, the reaction becomes more completed.
When the Ca/P ratios of the raw materials are low, Ca2P2O7 can be obtained. As the Ca/P ratio increases, CaHPO4 gradually becomes the major phase of the powders. Hydroxyapatite can be produced with more quantity of calcium oxide. However, as the quantity of the calcium oxide powder continues increasing, the peaks of the hydroxyapatite phase does not become stronger; only the peaks of the Ca(OH )2 greatly increase. Adding more phosphoric acid into the system, that is, decreasing the pH value in this system, hydroxyapatite phase could be easier observed.
When synthesize calcium phosphate coatings onto 304 stainless steel substrate, the surface processes of the ceramic coating growth are regarded as function of the concentration of the reactants and the temperature difference immediately at the surface. The process is mainly assumed to occur in some stages: First, the surface of the substrate would be modified by the phosphoric acid; then the powders coming along with the vapor condense into the substrate. Those adsorbed powders are gradually built into the lattice. After the nucleation and growth processes, finally the coating and some crystal could be attained.
The major composition of the coating is iron phosphate hydroxide (Fex(PO4)y(OH)z), and the color of it is green. The crystals obtained in this experiment include calcium pyrophosphate (JCPDS #44-762 Ca2P2O7.H2O), tricalcium phosphate (JCPDS #9-348 Ca3(PO4)2), and monetite (JCPDS #9-80 CaHPO4).

Chapter1 Introduction
1.1 Paper review
1.2 Inorganic phosphate
1.2.1 Hydroxyapatite
1.2.2 Calcium orthophosphates
1.3 304 stainless steel
1.4 The goal of this experiment
Chapter 2 Basic theories
2.1 Hydrothermal reaction
2.2 Pressure in the autoclave
2.3 The effects of process parameters
2.4 Mechanism for the crystal growth from solution
2.4.1 Nucleation of crystal
2.4.2 Growth of crystal
2.5 Phosphating
2.6 Metallic substrate coated with calcium phosphate ceramics
Chapter 3 Experiment
3.1 Experimental apparatus
3.2 Experiment procedure
3.2.1 Hydrothermally synthesis calcium phosphate powder
3.2.2 Substrate preparation
3.2.3 Stainless steel substrate coated with calcium phosphate
by hydrothermal method
3.2.4 Products analysis
Chapter 4 Results and Discussions
4.1 Hydrothermal synthesis of calcium phosphate powders
4.2 Hydrothermal Growth the calcium phosphate coating onto the
304 stainless steel substrate
4.2.1 Introduction
4.2.2 The coating mechanism
4.2.3 The model for the ceramic coating
4.2.4 The results of the calcium phosphate coating onto the
304 stainless steel substrate
4.3 The influence with the volume change of the crucible
Chapter 5 Conclusion
Chapter 6 Reference

1.Shigeyuki Somiya, Hydrothermal Reactions For Materials
science and Engineering─an Overview of Research in Japan,
1989 edition, Preface
2.Morey. G. W J. Amer. Ceram. Soc 36, 1953, p279~285
3.Morey, G. W. and Ingerson, E. J. Econ. Geol.32, 1937,p607~611
4.Shin-Ichi Hirano, Shigeyuki somiya, J. Am. Ceram. Soc. 59(11-
12)1976 p534
5.Masahiro Yoshimura, shigeyuki Somiya, Am. Ceram. Soc.
Bulletin 59(2) 1980 p246~249
6.Hideo Toraya et al. J. Am. Ceram. Soc. 65(9)1982 p159-160
7.Shigeyuki Somiya et al.Z. anorg. Allg. Chem. 540/541(1986)
p251-258
8.Eiji Tani et al. J. Am. Ceram. Soc. 64(12)1981 p181.
9.Eiji Tani et al. J. Am. Ceram. Soc. 66(1) 1983 p11~14
10.Masahiro Yoshimura et al. Report of the research laboratory
of engineering materials, Tokyo Institued of Technology, No
9,1984, p53~64
11.Masahiro Hosaka , Sadao Taki J. crystal growth
52,1981,p837~842
12.Masahiro Hosaka , Sadao Taki J. crystal growth
53,1981,p542~546
13.J.A.K.Tareen , B.Basavauingu Proceedings of the first
International symposium on hydrothermal reaction, Japan
22~26 march 1982 p649~657
14.L. M.Gan et al. Materials Chemistry and Physics 49,1997,p62-
66
15.Pingyun Feng et al. Nature vol. 388, 21 August 1997,
p735~741
16.Sophie Boudin , Kwang-Hwa Lii,Inorg. Chem. 37,1998,p799-803
17.Robin J. Francis et al. Chem. Commun. 1998 p279-280
18.Enrique Jaimez et al. J. Mater. Res., vol. 13 No 2 Feb
1998,p323~328
19.Mark L. F. Phillips, William T. A. Harrison Chem. Mater.
9,1997,p1837-1846
20.Atsuo Ito et al. J. Crystal Growth 163,1996,p311-317
21.H.Ishizawa, M.Ogino J. Mat. Sci 31,1996,p6279~6284
22.Masahiro Yoshimura et al. J. Alloys and Compounds 265,
1998,p132~136
23.Koji Kajiyoshi et al. J. Am. Ceram. Soc. 74(2)1991 p369-374
24.Y.S.Hsu et al. Ceramics International 24,1998, p7~12
25.Y.S.Hsu et al. Ceramics International 24,1998, p249~254
26.Darko Makovec and Miha Drofenik, J. Am. Ceram. Soc. 82[5]
1999,p1113-1120
27.Takayuki Tsukada et al. J. Am. Ceram. Soc. 82[5] 1999,p1169-
1174
28.A. Ravaglioli, A. Krajewski,Bioceramics, 1992,p173~187
29.Larry L. Hench , June Wilson, An Introduction to Bioceramics
1993,p139~180
30.T.S.B. Narasaraju, D.E. Phebe J. Mat. Sci. 31,1996,p1~21
31.E.E.Berry, Inorg. Nucl. Chem. Vol. 29,1967, p317-327
32.S.N.Vaidya et al. J. Mater. Sci. 32,1997, p3213~3217
33.P.Lacombe, B.Baroux, G.Beranger, Stainless
steels,1993,p823~p847
34.P.Lacombe, B.Baroux, G.Beranger, Stainless
steels,1993p163~p182
35.HAMAN,J.D.,SHANE,M.J.&SWITZER,J.A. J. Mater. Res.,
4(4),1989,p923-929
36.FEUERSANGER,A.E.,HANGENLOCHER,A.K.&SOLOMON,A.L.,
J. Electrochem. Soc. , 111,1964,p1387~1391
37.MONMA,H., J. Ceram. Soc. Jpn, Int. Edn, 101(7) 1993 p718~720
38.MONMA,H., J. Mater. Sci., 29(4)1994, p949~953
39.HATTORI,T. &IWADATE,Y., J. Am. Ceram. Soc. 73(6),1990,
p1803~1805
40.HATTORI,T.,IWADATE,Y&KATO,T., J. Mater. Sci. Lett. 8,1989,
p305~306
41.K.H.Chung et al. Ceramics international 23,1997, p19~25
42.KANDORI,K.,YASUKAWA,A.&ISHIKAWA,T. chemistry of
materials, 7(1)1995, p26~32
43.LAZIC,S., J. Crystal Growth, 147(1-2)1995 p147~154
44.SHAREEF,M.Y.,MESSER,P.F.&VANNOORT,R.,Biomaterials, 14(1)
1993,p69~75
45.SHIRKHANZADEH,M.&AZADEGAN,M., Mater. Lett., 15
(5-6)1993, p392~395
46.K. de Groot et al. Journal of Biomedical Materials Research,
Vol 36 (1997) p85~90
47.H.B. Wen et al. Journal of Crystal Growth 186(1998) p616~623
48.J.R. de Wijn et al. JOURNAL OF BIOMEDICAL MATERIALS
RESEARCH, Vol. 41, Iss. 2,(1998) p227-236
49.K. de Groot et al. Biomaterials, vol.18 (1997) p1471~1478
50.Larry L. Hench , June Wilson, An Introduction to Bioceramics
,1993,p223-238
51.Kennedy, G. C. Amer. J. Sci. 248,1950,p540~564
52.J. C. Brice M.A., Ph. D. Crystal Growth Processes,1986,p194-
211
53.Werner,Blum,Heinz,The Phosphating on Metal,
Rausch,1990,p17~24
54.F.P. Heller; U.S Patent 4,108,690 August 22,1978 Amchem
Products,Inc.
55.Werner,Blum,Heinz, The Phosphating on
Metal,Rausch,1990,p46~58
56.K. de Groot et al. Journal of biomedical materials research
,Vol 40 , Iss 3,(1998) pp 341-349
57.A. Ravaglioli, A. Krajewski, Bioceramics,1992, p198-210
58.Larry L. Hench , June Wilson, An Introduction to Bioceramics
,1993,p199~221
59.V.P.Greco, Plating and Surface Finishing, Oct.68,1989,p68~72
60.C.Quaeyhaegens, G.D.Knuyt, J.Haen and L.M.Stals, Thin Solid
Films, 258,1995,p170~173
61.H.E.Cheng, M.J.Chiang and M.H.Hon, J. Electrochem. Soc., 142
(5),1995,p1573~1578
62.Wenjian Weng J. Am. Ceram. Soc ,82[1] ,1999, p27~32
63.Kazuyuki Hosoi et al. J. Am Ceram. Soc. 79(10),1996,p2771-
2774
64.A. Ravaglioli, A. Krajewski, Bioceramics,appendix
C,1992,p413-p415
65.Bjorn O. Mysen et al. Phase Diagrams for ceramists,vol.VIII,
p46~47,the Am. Ceram. Soc.
66.THEODORE, B. ,EUGENE, A. A. & THEODORE III ,B. (ed.),
Marks’ Standard Handbook for Mechanical Engineers, 8th
edn.McGraw-Hill Book Co. , 1978, p4-29~4-30
67.Bobert S. Roth et al., Phase Diagrams for ceramists, vol. V,
p323-324,the Am. Ceram. Soc.
68.Bjorn O. Mysen et al. Phase Diagrams for ceramists, vol.
VIII,p47~48, the Am. Ceram. Soc.
69.R.F.Strickland,Kinetics and mechanism of
crystallization,1968,p17-22
70.Gene Carleton Ulmer,Hubert,Lioyed Barnes, Hydrothermal
experimental techniques ,1987, p122-123
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊