跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭文旬
研究生(外文):Wen-Hsun Kuo
論文名稱:電漿沈積薄膜之表面接枝共聚合及其應用
論文名稱(外文):Surface Graft Polymerization of Plasma Deposited Films and Their Applications
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-Shao Chen
學位類別:碩士
校院名稱:大同工學院
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:92
中文關鍵詞:電漿化學氣相沈積光接枝聚合濕度感測葡萄糖氧化酵素酵素固定化
外文關鍵詞:PECVDgraft copolymerizationhumidity sensorGODenzyme immobilization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工業生產、家庭安全、環境檢測控制和醫學醫療保健等應用領域對化學感測器的需求越來越迫切。為滿足此需求,本實驗利用電漿聚合方式沈積含錫有機薄膜於矽晶片上之感測電極,並施予光接枝聚合親水性高分子PAAm(polyacryamide),製作成電阻式濕度感測器。結果顯示,電漿聚合時間越久(5~30 min)膜越厚薄膜導電性越好。在矽晶片製作成之微小感測元件上以薄膜技術製作的親水性薄膜感濕性較單有電漿膜佳;且接枝聚合後,對濕度的量測範圍、反應時間都有改進效果。
一般金屬及陶瓷等無機基材對生物酵素的附著力不佳,若想將無機材料應用於生物醫學用途或是生理監視用途,必須結合無機材料及生物蛋白質的特性,此時兩者間具有共價鍵結的介面層是相當值得研究的。本實驗在金屬及陶瓷等無機材料上以電漿聚合沈積反應(plasma deposition)及光接枝法進行表面改質。電漿聚合沈積反應是將有機單體通入真空系統中,有機單體於電漿氣氛中進行聚合反應,並沈積於無機基材上,使無機基材表面有機化,且產生過氧化基或活化點。再以UV光接枝系統,將PAAm接枝於其上,使表面含有-NH2,再經過PEI及戊二醛處理,即可固定上葡萄糖氧化酵素。固定在Al2O3梳型電極上的葡萄糖氧化酵素可在pH 7.0的PB溶液中保存維持其反應活性達75天。
若要製作具有同時偵測多種蛋白質酵素的生物感測器,我們可以在表面不同區域接枝不同官能基的高分子(ex: -NH2, -COOH),以便提供將來蛋白質酵素上的特定官能基固定化。
Plasma contains activated species able to initiate chemical and physical reactions at solid surface. The organic gas plasma deposition leads to polymer-forming reactions.
The water-soluble polymeric chains can be readily induced on the surface of plasma polymerized deposited films by photo-induced graft polymerization. In this study, graft polymerization of acrylamide (AAm) was used to modify the surface of inorganic materials, which were pre-treated with plasma polymerization. The surface modifications of the polymers both by plasma CVD and by the subsequent UV photo-induced graft polymerization of AAm were evaluated. The results were summarized as on the followings:
1. The effect of graft AAm on humidity sensing properties
A resistive type sensor device was made by semi-conductor manufacture technology on the Si wafer. Plasma-polymerized organic film with semi-conductive SnOx was used as a sensitive layer with peroxide and radical. This film is fabricated by duplex process; (1) photo-initiated surface graft polymerized hydrophilic acrylamide (AAm); (2)immobilization of water soluble polymer solution such as PAAm by γ-ray irradiation. By surface modification of plasma deposited films, transition from hydrophobic to hydrophilic has been achieved to improve humidity sensibility in sensor application. After grafting hydrophilic copolymer, the humidity sense range will increase from R.H. 45~65 % to R.H. 45~85 %, while the response time will decrease to about 3 sec.
2. The interlayer between the inorganic substrate and enzyme
The structures of metals and ceramics are distinct from the polymers. In general, it is difficult to combine polymer with metals and ceramics. Plasma deposited films have good adhesion with substrates, and some radicals and peroxides are generated on it. After grafting Acrylamide (AAm) polymerization, functional structure that suitable for chemical bond proteins on surface can be formed on the surface. Therefore, the enzyme can be immobilized on the surface of an inorganic substrate convalently. However, in the process of enzyme immobilization, the amount of —NH2 group on the grafting AAm surface is not enough for GA bonding with the —NH2 group of enzyme. In this study, before GA reaction we introduced a pre-treatment on the surface to increase the amide groups by PEI (polyethylene-imine, (C2H5N)n)) treatment on the surface. An amide bond is formed between the amino group of PEI and grafted-AAm surface. Thus, the enzymes were effectively covalent bonding between GA treated surface. The Glucose oxidase (GOD) enzyme was used to immobilize on the inorganic materials surface, which was treated by duplex process, i.e., the plasma polymerized organo-tin films and subsequent surface-graft AAm with glutaraldehyde (GA) as a linking agent. The activity of immoilized GOD on the sample with PEI pre-treatment increase about 15~20 times higher than that without PEI pre-treatment. Therefore the PEI pre-treatment could improve the immobilized amount of GOD on inorganic materials.
Acknowledgment
Abstract
Content
List of Table
List of Figures
Chapter 1 Introduction
Chapter 2 Literature Review
2-1 Plasma
2-2 Plasma Polymerization
2-3 Graft Polymerization
2-4 Humidity Sensor
2-4.1 Mechanism of Water Absorption on Solid Surfaces
2-4.2 Mechanism of Water Absorption on Resistive Materials
2-5 Bi-graft of monomer onto plasma film
2-6 Enzyme Immobilization
2-6.1 Immobilization techniques
2-6.2 The surface modification of inorganic substrates
2-6.3 Polyethylenimine copolymerization
Chapter 3 Experiments
3-1 Flow chart of experiments
3-2 Materials
3-2.1 Substrates
3-2.2 The surface cleaning reagents
3-2.3 Monomers of plasma deposition
3-2.4 Gases of plasma treatment
3-2.5 Reagents used in grafted polymerization
3-2.6 Reagents used for immobilized Enzyme
3-2.7 Reagents of assay of enzymatic activity
3-3 procedure
3-3.1 Substrates preparation
3-3.2 Deposited of plasma films
3-3.3 Photo-induced PAAm graft copolymerization
3-3.4 Pre-treatment of enzyme immobilized
(a) Polyethylenimine treatment
(b) Glutaradlehyde treatment
3-3.5 Enzyme immobilized
3-3.6 Select graft
3-4 Equipment
3-4.1 Plasma reactor
(a) Radio Frequency (R.F.) Generator
(b) Bell-jar Reactor
(c) Vacuum pump
(d) Gas Supply System
3-4.2 Photo-induced graft system
3-5 Analysis and test
3-5.1 Character analysis
(a) Wettability Test
(b) Measurement of Film Thickness
(c) QCM Measurement
(d) ESCA Analysis
(e) SEM Morphology
(f) Infrared Analysis
3-5.2 Evaluation of Humidity Sensor
(a) Impedance Measurement
(b) SAW
3-5.3 Assay of enzymatic activity
(a) The reactive principle of 4-aminoantipyrine method
(b) The reagent of 4-aminoantipyrine method
Chapter 4 results and Discussions
4-1 Plasma deposited SnOxC film
4-1.1 Deposited rate of SnOxC film
4-1.2 SEM Morphology of SnOxC film
4-1.3 ESCA spectroscopy of SnOxC film
4-1.4 Temperature effect
4-2 Surface graft of AAm onto the SnOxC films
4-2.1 Wettability of photo-graft AAm surface
4-2.2 SEM Morphology of photo-graft AAm
4-2.3 Chemical structures of photo-graft AAm
4-3 Resistivity of plasma film
4-3.1 Electrical properties of SnOxC film
4-3.2 Humidity Sensing
(a) SnOxC film
(b) Graft film
(c)γ-ray irradiate plasms film surface smeared with hydrophilic copolymer
4-3.3 Response Time of the Humidity Sensor
4-3.4 Effect of moisture on the surfave modified SAW
4-4 Ethanol Sensing
4-5 Bi-graft of monomer onto plasma films
4-5.1 Water Contact angle measure
4-5.2 ESCA spectroscopy
4-6 Enzyme immobilized
4-6.1 The model of enzyme immobilization
4-6.2 Optimal substrates for enzyme immobilization
4-6.3 Effect of photo-graft AAm
4-6.4 The reaction concentration of PEI and GA
4-6.5 Reaction time of PEI and GA
4-6.6 Reaction time of GOD
4-6.7 Storage for immobilized GOD
4-6.8 Reaction mechanism of enzyme immobilization by ESCA
Chapter 5 Conclusion
Reference
1. H.Yasuda ed., "Plasma Polymerization", Academic Press, lnc., Orando, 1985
2. N. Inagaki, ed. ”Plasma surface modification and plasma polymerization”, Technomic Publishing Company, Lancaster basel (1996)
3. 永野正光,"透明導電膜SnO2薄膜",Fineceramic (Japanese),Vol.7, pp. 15~23 (1986)
4. 陳克紹,王國章,Chinese J. Materials Sci., Vol. 22, No.1 pp. 51~61 (1991)
5. Joon Bu Park ed. "Biomaterials an Introduction" pp. 1-6 Plenum Publications, New York (1979).
6. 木村馨, 砂川誠著, "高機能性接著劑, 黏著劑" 共立出版 Japan (1989).
7. F.F. Bunshan, et., "Deposition Technologies for Films and Coating" Noyes Publications, New Jersey (1982).
8. M. Suzuki, A. Kishida, H. Iwata, and Y. Ikada, Macromolecules, 19, 1804 (1986).
9. H. Iwata, A. Kishida, M. Suzuki, Y. Hata and Y. Ikada, J. Appl. Polym. Sci., Part A. Polym. Chem. Vol. 26, pp. 3309-3322 (1988).
10. 陳克紹, O. Tsuji, 筏義人, 中華民國第十五屆高分子研討會論文專集, P 945, 1992, Taiwan.
11. G.H. Hsiue and W.K. Hang, J. Appl. Polym. Sci., Vol. 30, pp. 1023-1033 (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top