跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊聖輝
研究生(外文):Shen-Hui Yang
論文名稱:以熱處理配合剪力鍛造製備細晶粒鋅鋁合金之製程、微結構及超塑性研究
論文名稱(外文):A study on the combined thermal and shear forging processing, microstructural evolution and the superplasticity of Zn—Al alloys
指導教授:楊智富楊智富引用關係
指導教授(外文):Chih-Fu Yang
學位類別:碩士
校院名稱:大同工學院
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:119
中文關鍵詞:高應變速率超塑性熱機處理反覆式剪力鍛造
外文關鍵詞:high strain rate superplasticitythermo-mechanical treatmentreciprocating shear forging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討利用一特殊之熱機處理製程來製備具高應變速率超塑性(high strain rate superplasticity)之細晶粒Zn — 22 wt.% Al合金及 Zn — 22 wt.% Al — 0.1 wt.% Zr合金,並探討其微結構及超塑性質。本研究所設計之熱機處理包含一階段或二階段時效處理及反覆式剪力鍛造製程,藉此可獲致高應變速率超塑性所需之超微細等軸晶結構。研究結果顯示,在許多不同的製程條件下,特別是試片經兩階段時效(包含自然時效二週,及人工時效1小時)後再經C製程(Route C)剪力鍛造3次可以得到較適合於高應變速率超塑性的晶粒結構。在剪力鍛造製程裡,以Route C所鍛之試片具有良好的超塑性延伸率數值,其原因在於以C製程剪力鍛造之試片受到較均勻的變形。經由一適當之熱機處理製程(兩階段時效及經C製程剪力鍛造3次)所得之晶粒結構,在250℃做超塑性拉伸試驗時,Zn-Al合金可以在初始應變速率1.5 × 10-2 s-1下得到最佳之伸長量1270%,而Zn-Al-Zr合金則可以在初始應變速率4 × 10-2 s-1下得到最佳之伸長量1250%。

In this study a special thermo—mechanical processing was applied to the monotectoid Zn—22 wt.% Al and a Zn — 22 wt.% Al — 0.1 wt.% Zr alloys to produce fine grained microstructures for high strain rate superplasticity studies. The designed thermo—mechanical processing involved a one—step or two—step aging treatment in conjunction with a reciprocating shear forging processing. By this method an ultrafine equiaxed granular structure with high strain rate superplasticity (HSRSP) property was developed.
The results showed that, among many processing routes, a thermo—mechanical process, consisted of a two—step aging treatment (natural aging for 2 weeks and artificial aging at 240℃ for 1 hour) and a shear forging processing by Route C for 3 cycles, produces a proper grain structure with satisfactory high strain rate superplasticity properties. The higher superplastic tensile elongation values achieved by Route C are likely due to the more uniform deformation characteristics in the process.
Through a selected thermo—mechanical processing (two—step aging treatment and shear forging processing by Route C for 3 cycles), a maximum superplastic tensile elongation of 1270% in the Zn—Al alloy was obtained under an initial strain rate of 1.5 × 10-2 s-1 at 250℃, and in the Zn—Al—Zr alloy the maximum superplastic tensile elongation of 1250% was achieved when tested at 250℃ under the initial strain rate of 4 × 10-1 s-1.

CHINESE ABSTRACT
ENGLISH ABSTRACT
TABLE OF CONTENT
LIST OF TABLES
LIST OF FIGURES
CHAPTER
I. INTRODUCTION
II. LETERATURE SURVEY
A. Introduction of Superplasticity
1. Superplasticity in Zn—Al alloy
2. Mechanical aspects of superplasticity
3. Requirements for superplastic
a. Fine grain size
b. Presence of second phase
c. Nature of grain boundary structure
d. Shape of grains
e. Mobility of grain boundaries
f. Grain boundaries and their resistance to tensile separation
B. Grain Refinement of Duplex Alloys
1. Phase separation
2. Mechanical working
C. Techniques of Mechanical Working For Effective Grain Refinement
1. Rolling
2. Equal channel angular pressing (ECA pressing
3. Torsion
D. Microstructural Characteristics and Mechanisms of Superplastic Deformation
1. Microstructural characteristics
a. Grain growthth
b. Grain boundary curvature
c. Grain sliding, rotation and displacement
2. Mechanisms of superplastic deformation
a. Dislocation models
b. Diffusion models
E. High—Strain—Rate Superplasticity (HSRSP)
1. Introduction of high—strain—rate superplasticity
2. Deformation mechanisms of high—strain—rate superplasticity
a. HSRSP attained by liquid phase enhanced grain boundary sliding
b. HSRSP attained by intense plastic straining
3. Commercial applications for HSRSP
III. EXPERIMENTAL PROCEDURES
A. Materials Preparation
B. Shear Forging
C. Macroscopic Observation
D. Scanning Electron Microscopy Examination
E. Microhardness Test
F. The Superplastic Test
G. Determination of Strain Rate Sensitivity
H. Formability Test
IV. RESULTS AND DISCUSSIONS
A. Morphology of the Thermal Treated Zn — 22 wt.% Al Alloy
B. Deformation Characteristics of the Shear Forging
C. Microstructural Evolution of the Zn—Al Alloy during Shear Forging
D. The Superplastic Tensile Test
1. The effect of testing temperature on the superplasticity
2. The effect of shear forging route on the superplasticity
3. The effect of shear forging cycle on the superplasticity
4. The effect of initial structure prior to the shear forging on the superplasticity
5. The effect of annealing time on the superplasticity
E. Microstructural Evolution during Superplastic Deformation
F. Determination of Strain Rate Sensitivity
G. The Formability and the Microhardness Tests
H. The Effect of Zr addition in the Zn — 22 wt.% Al Alloy
V. CONCLUTIONS
REFFERENCE
List of Tables
Table 2.1 Examples of typical superplastic materials [1-12].
Table 3.1 Chemical compositions of ZnAl and Zn—Al—Zr alloys.
Table 3.2 Four types of heat treatment applied to the Zn—Al and Zn—Al—Zr alloys.
Table 4.1 Percentage of elongation tested at various temperatures and strain rates for the No. 3 thermal treated and shear forged Zn—Al alloy by Route C for 5 cycles.
Table 4.2 Percentage of elongation tested at 250℃ under various strain rates for the No. 3 thermal treated and shear forged Zn—Al alloy by three kinds of forging route for 3 cycles.
Table 4.3 Percentage of elongation tested at 250℃ under various strain rates for the No. 3 thermal treated and shear forged Zn—Al alloy by Route C for various forging cycles.
Table 4.4 Percentage of elongation tested at 250℃ under various strain rates for the Zn—Al alloy specimens subjected to the No. 1—3 thermal treatment and shear forging by Route C for 3 cycles.
Table 4.5 Percentage of elongation tested at 250℃ under various strain rates for the Zn—Al alloy specimens subjected to the No. 3 thermal treatment, shear forging by Route C for 5 cycles and an annealing treatment at 240℃ for various time periods.
Table 4.6 Formability properties in the No. 3 thermal treated Zn—Al and Zn—Al—Zr alloys.
Table 4.7 Formability properties in the shear forged Zn—Al and Zn—Al—Zr alloys by Route C for 3 cycles.
Table 4.8 Microhardness (Hv) of the No. 3 thermal treated and shear forged Zn—Al and Zn—Al—Zr alloys by Route C for 1—6 cycles.
Table 4.1 Percentage of elongation tested at 250℃ under various strain rates for the No. 3 thermal treated, shear forged Zn — Al and Zn—Al—Zr alloys by Route C for 3 cycles.
List of Figures
Fig. 2.1 The phase diagram of Zn—Al system.
Fig. 2.2 The tensile ductility of natural aged Zn—Al alloys at various temperatures [13].
Fig. 2.3 The tensile elongation (a) and the flow stress (b) of cold rolled Zn—Al alloys at various temperatures. The tensile elongation and flow stress of Zn—Al alloys prior to the cold rolling (dashed line) are also shown for comparison [14].
Fig. 2.4 TTT diagram for Zn—Al alloy [15].
Fig. 2.5 Schematic illustration of the logarithmic plot of superplastic materials, stress versus strain rate [16].
Fig. 2.6 Schematic illustration of the microstructural changes that occur during grain refinement by phase separation from a non-equilibrium microstructure [16].
Fig. 2.7 Schematic illustration of the microstructural changes that occur during grain refinement by mechanical working of duplex alloys [16].
Fig. 2.8 A schematic diagram of ECA Pressing [20].
Fig. 2.9 A schematic diagram of torsion straining [21].
Fig. 2.10 Replica showing evidence for enhanced boundary curvature produced by superplastic deformation of a monotectoid Zn—Al alloy, and (b) Removal of curvature on subsequent annealing [35].
Fig. 2.11 Scanning electron micrographs of a deformed sample of SnPb eutectic alloy at different stages of deformation. (a)  (f) the strains involved are 120, 180, 270, 540, 610 and 800 percent, respectively. Significant grain boundary sliding is evident [36].
Fig. 2.12 Scanning electron micrographs at increasing time intervals during the tensile straining of a thin foil in the microscope at 1 MeV, stress 18.5 MNm-2, temperature 373 K (m=0.3); grain switching, ‘pinching off’ of  grains by grains of  and curving of interphase boundaries present [37].
Fig. 2.13 Schematic illustration of the strain rate dependence of flow stress in a superplastic material [41].
Fig. 2.14 Dislocation pile-up models of superplastic flow. The rate at which the grains slide past each other can be controlled by (i) the removal of a pile-up of lattice dislocations (ii) The emission of lattice dislocations from grain boundary ledges and (iii) by the removal of pile-ups of grain boundary dislocations [43].
Fig. 2.15 Grain switching through diffusional mass transport as postulated by Ashby and Verrall (a1-a2) and modified by Spingarn and Nix (b1-b2-b3) [16].
Fig. 2.16 Schematic illustration of the Ball-Hutchison model modified by contribution of subgrains to grain boundary sliding [50].
Fig. 2.17 The variation in superplastic strain rate as a function of the inverse of grain size [56, 57].
Fig. 3.1 Procedure flow chart.
Fig. 3.2 The model of shear forging; (a) the apparatus used for shear forging; (b) the photograph of the model; (c) sample chart of the model and (d) the punchers with angle 0 and 60.
Fig. 3.3 A schematic diagram of shear forging.
Fig. 3.4 Hung—Ta HT—8150 materials testing system equipped with a 5—zone segment electric furnace.
Fig. 3.5 Geometries of specimen for superplastic tensile test.
Fig. 3.6 A typical load-elongation plot of the step strain rate test.
Fig. 3.7 Specimen geometry specified by ASTM E9 for compression test, (b) specimen dimensions for the compression type formability test.
Fig. 4.1 Morphologies of various thermal treated Zn — 22 wt.% Al alloys. (a) NA for 1 hour,  matrix with a small amount of  dispersoids, (b) NA for I hour + AA at 240℃ for 1 hour, coexisted granular and lamellar structure of  phases, (c) NA for 2 weeks + AA at 240℃ for 1 hour, granular mixture of , (d) direct quench and aged at 175℃ for 1 hour.
Fig. 4.2 EPMA of a No. 3 thermal treated Zn — 22 wt.% Al alloy; (a) BEI showing equiaxed , (b) elementary digital mapping of Al, (c) elementary digital mapping of Zn.
Fig. 4.3 Macrographs of the Zn—Al alloy specimens shear forged by Route A for (a) N = 0, (b) N = 1/2 and (c) N = 1. The contour of markers embedded on the sideface of the specimens are re-drawn for reference.
Fig. 4.4 Macrographs of the Zn—Al alloy specimens shear forged by Route B for (a) N = 1/4, (b) N = 3/4 and (c) N = 5/4. The contour of markers embedded on the sideface of the specimens are re-drawn for reference.
Fig. 4.5 Macrographs of the Zn—Al alloy specimens shear forged by Route C for (a) N = 1, (b) N = 3/2 and (c) N = 2. The contour of markers embedded on the sideface of the specimens are re-drawn for reference.
Fig. 4.6 SEM morphology of the No. 1 thermal treated Zn—Al alloy shear forged for 3 cycles by (a) Route A, (b) Route B, and (c) Route C.
Fig. 4.7 SEM morphology of the No. 2 thermal treated Zn—Al alloy shear forged for 3 cycles by (a) Route A, (b) Route B, and (c) Route C.
Fig. 4.8 SEM morphology of the No. 3 thermal treated Zn—Al alloy shear forged for 3 cycles by (a) Route A, (b) Route B, and (c) Route C.
Fig. 4.9 SEM morphology of the No. 1 thermal treated Zn—Al alloy shear forged by Route C for (a) 3, (b) 5, and (c) 7 cycles.
Fig. 4.10 SEM morphology of the No. 2 thermal treated Zn—Al alloy shear forged by Route C for (a) 3, (b) 5, and (c) 7 cycles.
Fig. 4.11 SEM morphology of the No. 3 thermal treated Zn—Al alloy shear forged by Route C for (a) 3, (b) 5, and (c) 7 cycles.
Fig. 4.1 Microstructures of the Zn—Al alloy subjected to a No. 1 thermal treatment, shear forging by Route C for 7 cycles and annealing treatment at 240℃ for (a) 1 min. (b) 10 min. and (c) 60 min.
Fig. 4.13 Microstructures of the Zn—Al alloy subjected to a No. 2 thermal treatment, shear forging by Route C for 7 cycles and annealing treatment at 240℃ for (a) 1 min. (b) 10 min. and (c) 60 min.
Fig. 4.14 Microstructures of the Zn—Al alloy subjected to a No. 3 thermal treatment, shear forging by Route C for 7 cycles and annealing treatment at 240℃ for (a) 1 min. (b) 10 min. and (c) 60 min.
Fig. 4.15 Appearance of the pull-to-failure Zn—Al alloy specimens after the superplastic tensile testing at (a) 250, (b) 200 and (c) 150℃ in a No. 3 thermal treated and shear forged by Route C for 5 cycles condition. The numerical numbers 1—4 indicates the specimens in the prior to test condition, and tested conditions under  of 1.5 × 10-3, 1.5 × 10-2 and 4 × 10-1 s-1, respectively.
Fig. 4.1 The tensile elongation of No. 3 thermal treated and shear forged Zn—Al alloy specimens by Route C for 5 cycles tested at 150, 200 and 250℃ as a function of initial strain rate.
Fig. 4.17 Appearance of the pull-to-failure Zn—Al alloy specimens after the superplastic tensile testing at 250℃ in No. 3 thermal treated and shear forged for 3 cycles by (a) Route A, (b) Route B and (c) Route C conditions. The numerical numbers 1—4 indicates the specimens in the prior to test condition, and tested conditions under  of 1.5 × 10-3, 1.5 × 10-2 and 4 × 10-1 s-1, respectively.
Fig. 4.1 The tensile elongation of No. 3 thermal treated and shear forged Zn—Al alloy specimens by Route A—C for 3 cycles tested at 250℃ as a function of initial strain rate.
Fig. 4.19 Appearance of the pull-to-failure Zn—Al alloy specimens after the superplastic tensile testing at 250℃ in No. 3 thermal treated and shear forged by Route C for (a) 3, (b) 5 and (c) 7 cycles conditions. The numerical numbers 1—4 indicates the specimens in the prior to test condition, and tested conditions under  of 1.5 × 10-3, 1.5 × 10-2 and 4 × 10-1 s-1, respectively.
Fig. 4.1 The tensile elongation of No. 3 thermal treated and shear forged Zn—Al alloy specimens by Route C for 3, 5 and 7 cycles tested at 250℃ as a function of initial strain rate.
Fig. 4.21 Appearance of the pull-to-failure Zn—Al alloy specimens after the superplastic tensile testing at 250℃ in (a) No. 1, (b) No. 2 and (c) No. 3 thermal treated and shear forged by Route C for 3 cycles conditions. The numerical numbers 1—4 indicates the specimens in the prior to test condition, and tested conditions under  of 1.5 × 10-3, 1.5 × 10-2 and 4 × 10-1 s-1, respectively.
Fig. 4.1 The tensile elongation of No. 1—3 thermal treated and shear forged Zn—Al alloy specimens by Route C for 3 cycles tested at 250℃ as a function of initial strain rate.
Fig. 4.23 Appearance of the pull-to-failure Zn—Al alloy specimens after the superplastic tensile testing at 250℃ in No. 3 thermal treated, shear forged by Route C for 5 cycles and annealed at 240℃ for (a) 0 min. (b) 10 min. and (c) 60 min. conditions. The numerical numbers 1—4 indicates the specimens in the prior to test condition, and tested conditions under  of 1.5 × 10-3, 1.5 × 10-2 and 4 × 10-1 s-1, respectively.
Fig. 4.24 The tensile elongation of Zn—Al alloy specimens subjected to a No. 3 thermal treatment, shear forging by Route C for 5 cycles and an annealing treatment at 240℃ for 0, 10 and 60 minutes tested at 150, 200 and 250℃ as a function of initial strain rate.
Fig. 4.25 Morphologies of the Zn—Al alloy specimen which was thermo-mechanical processed (No. 3 thermal treated and shear forged by Route C for 3 cycles) and tensile tested at 250℃ under an initial strain rate of 1.5 × 10-3 s-1, (a) grip area, (b) gage section, SEI, and (c) gage section, BEI.
Fig. 4.1 Morphologies of the Zn—Al alloy specimen which was thermo-mechanical processed (No. 3 thermal treated and shear forged by Route C for 3 cycles) and tensile tested at 250℃ under an initial strain rate of 1.5 × 10-2 s-1, (a) grip area, (b) gage section, SEI, and (c) gage section, BEI.
Fig. 4.27 Morphologies of the Zn—Al alloy specimen which was thermo-mechanical processed (No. 3 thermal treated and shear forged by Route C for 3 cycles) and tensile tested at 250℃ under an initial strain rate of 4 × 10-1 s-1, (a) grip area, (b) gage section, SEI, and (c) gage section, BEI.
Fig. 4.28 The flow stress versus strain rate for a No. 3 thermal treated and shear forged Zn—Al alloy by Route C for 3 cycles. (b) The resulted strain rate sensitivity as a function of strain rate.
Fig. 4.29 side-view and (b) top-view macrographs of No. 3 thermal treated (N = 0) and thermo-mechanical processed (by Route C for N = 3) Zn—Al alloy specimens after the formability test, and the load versus displacement curves of the compressive test for (c) N = 0 and (d) N = 3 conditions.
Fig. 4.30 side-view and (b) top-view macrographs of No. 3 thermal treated (N = 0) and thermo-mechanical processed (by Route C for N = 3) Zn—Al—Zr alloy specimens after the formability test, and the load versus displacement curves of the compressive test for (c) N = 0 and (d) N = 3 conditions.
Fig. 4.31 Microstructural evolution of a No. 3 thermal treated Zn — 22 wt.% Al — 0.1 wt.% Zr alloy in the course of shear forging by Route C. (a) N = 1, (b) N = 2, (c) N = 3, (d) N = 4, (e) N = 5 and (f) N = 6.
Fig. 4.32 Appearance of the pull-to-failure (a) Zn—Al and (b) Zn—Al—Zr alloy specimens after the superplastic tensile testing at 250℃ in a No. 3 thermal treated and shear forged by Route C for 3 cycles conditions. The numerical numbers 1—4 indicates the specimens in the prior to test condition, and tested conditions under  of 1.5 × 10-3, 1.5 × 10-2 and 4 × 10-1 s-1, respectively.
Fig. 4.1 A comparison of the superplastic tensile elongation data for Zn—Al and Zn—Al—Zr alloys tested at 250℃ under various initial strain rate in a No. 3 thermal treated and shear forged by Route C for 3 cycles conditions.
Fig. 4.34 A comparison of the superplastic characteristics at 250℃ in No. 3 thermal treated and shear forged Zn—Al and Zn—Al—Zr alloys by Route C for 3 cycles. (a) The flow stress versus strain rate. (b) The strain rate sensitivity versus strain rate.
Fig. 4.1 Morphologies of the Zn—Al—Zr alloy specimen which was thermo-mechanical processed (No. 3 thermal treated and shear forged by Route C for 3 cycles) and tensile tested at 250℃ under an initial strain rate of 1.5 × 10-3 s-1, (a) grip area, (b) gage section, SEI, and (c) gage section, BEI.
Fig. 4.36 Morphologies of the Zn—Al—Zr alloy specimen which was thermo-mechanical processed (No. 3 thermal treated and shear forged by Route C for 3 cycles) and tensile tested at 250℃ under an initial strain rate of 1.5 × 10-2 s-1, (a) grip area, (b) gage section, SEI, and (c) gage section, BEI.
Fig. 4.37 Morphologies of the Zn—Al—Zr alloy specimen which was thermo-mechanical processed (No. 3 thermal treated and shear forged by Route C for 3 cycles) and tensile tested at 250℃ under an initial strain rate of 4 × 10-1 s-1, (a) grip area, (b) gage section, SEI, and (c) gage section, BEI.

[1] G. Rai. and N. J. Grent, Metall. Trans A Vol.6A (1975) 385
[2] R. Grimes, M. J. Stowell, and B. M. Watts, Metals Technol Vol.3 (1976) 154
[3] D. Matruki. and M. Yamada, J. Japan Inst. Metals Vol.37 (1973) 448
[4] C. E. Pearson, J. Inst. Metals Vol.54 (1934) 111
[5] S. A. Shei. And T. G. Langton, J. Mater. Sci. Vol.13 (1978) 1084
[6] G. L. Dunlop and D. M. R. Taplin, J. Mater. Sci. Vol.7 (1972) 84
[7] D. See, Acta. Met. Vol.17 (1969) 1057
[8] W. A. Backofen, F. J. Azzarto, G. S. Murty, and S. W. Zehr, Ductility, American Society for Metals, Metals Park, OH, (1968) 279-310
[9] P. Chaudhari and S. Mader, High Speed Testing, Interscience, New York, NY, Vol.VII, (1969) 1-17
[10] M. M. I. Ahmed and T. G. Langton, Metall. Trans. A Vol.8A (1977) 1832
[11] D. Lee and W. A. Bacdafen, Trans TMS-AIME Vol.239 (1967) 1034
[12] H. Ishikawa, F. A. Mohaned, and T. G. Langton, Phil. Mag, Vol.32 (1975) 1269
[13] E. E. Underwood, Jour. Metals, 14, (1962) 914
[14] O. A. Кайбышев: Πластичность и Сверхпластичность Металлов. Изд. Металл., 1975
[15] A. E. W. Smith and G. A. Hare, J. of The Institute of Metal Vol. 101 (1973) 320-328
[16] J. Pilling and N. Ridley Superplasticity in Crystalline Solids (1989) 9-15
[17] F. W. Ling and D. Laughlin, Metall. Trans. 10A (1979) 921-928
[18] T. H. Alden and H. W. Schadler, Trans. TMS-AIME 242 (1968) 825-832
[19] A. Ball and M. M. Hutchison, Metal Sci. J. 3 (1969) 1-7
[20] V. M. Segal, Mater. Sci. Eng. A197 (1995) 157-164
[21] Y. Ma, M. Furukawa, Z. Horita, R. Z. Valiev and T. G. Langdon, Mater. Trans., JIM Vol. 37 No. 3 (1996) 336-339
[22] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater. Vol. 45 No. 11 (1997) 4733-4741
[23] Y. Ma, M. Furukawa, Z. Horita, R. Z. Valiev and T. G. Langdon, Mater. Sci. Eng., A241 (1998) 122-128
[24] R. Z. Valiev, N. A. Krasillnikov and N. K. Tsenev, Materr. Sci. Eng. A137 (1991) 35-40
[25] R. Z. Valiev, A. V. Korznikov and R. R. Muulyukov, Mater. Sci. Eng. A168 (1993) 141
[26] Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev and T. G. Langdon, J. Mater. Res. 11 (1996) 1880
[27] L. C. A. Samuelsson et al., Acta Metall. Vol. 24 (1974) 1017
[28] G. B. Brook, Sheet Metal Ind., Vol. 58 No. 8 (1981) 801-809
[29] H. Naziri, R. Pearce, M. H. Brown and K. F. Hale, Acta Metall. 23 (1975) 489
[30] D. Lee, Acta Metall.17 (1969) 1057
[31] D. Lee, Metal. Trans. 1 (1970) 309
[32] M. J. Stowell, J. L. Robertson and B. M. Watts, Metal. Sci. J. 3 (1969) 41
[33] R. B. Nicholson, Electron Microscopy and the Structure of Materials (1972) 689
[34] O. D. Sherby, B. Walser, C. M. Young and E. M. Cady, Scripta Metall. 9 (1975) 569
[35] T. H. Alden and H. W. Schadler, Trans. Met. Soc. AIME 242 (1968) 825
[36] G. L. Dunlop and D. M. R. Taolin, J. Mater. Sci. 7 (1972) 316
[37] A. E. GecKinli and C. R. Barrett, J. Mater. Sci. 11 (1976) 510
[38] D. J. Dingley, Proc. III Annual SEM Symp. IIT Illinois (1970) 329
[39] W. Holtz, E. Ruedl and P. Schiller, J. Mater. Sci. 10 (1975) 2003
[40] H. Naziri, R. Pearce, M. H. Brown and K. F. Hale, J. Microscopy 97 (1973) 229
[41] J. W. Edington, K. N. Melton and C. P. Cutler, Prog. Mater. Sci. 21 (1976) 67-170
[42] P. M. Hazzledine and D. E. Newbury, Grain Boundary Structure and Properties (1976) 235-266
[43] A. Ball and M. M. Hutchison, Metal. Sci. J. 3 (1969) 1-7
[44] A. K. Mukherjee, Mater. Sci. Eng. 8 (1971) 235-266
[45] R. C. Gifkins, Superplastic Forming of Structural Alloys (1982) 3-26
[46] L. K. L. Falk, P. R. Howell, G. L. Dunlop and T. G. Langdon, Acta Metall. 34 (1986) 1203-1214
[47] R. C. Gifkins, Metall. Trans 7A (1976) 1225-1232
[48] M. F. Ashby and R. A. Verrall, Acta Metall. 21 (1973) 149-163
[49] J. R. Spingarn and W. D. Nix. Acta Metall. 26 (1978) 1389-1398
[50] W. J. Kim, E. Taleff and O. D. Sherby, Scripta Metall. Vol. 32 No. 10 (1995) 1625-1630
[51] Glossary of terms used in metallic superplastic materials, JIS H 7007 (1995) 3
[52] T. G. Nieh and J. Wadsworth, Scripta Metall. Mater., Vol. 32 (1995) 1133-1137
[53] T. G. Nieh, A. J. Schwartz and J. Wadsworth, Mater. Sci. Eng., Vol. A208 (1996) 30-36
[54] M. Mabuchi and K. Higashi, Philos. Mag. A, Vol. 74 (1996) 887-905
[55] M. Mabuchi, K. Kubota and K. Higashi, Scripta Metall. Mater., Vol. 33 (1995) 331-335
[56] O. D. Sherby and J. Wadsworth, Prog. Mater. Sci., Vol. 33 (1989) 169-221
[57] K. Higashi, M. Mabuchi and T. G. Langdon, ISIJ Int., Vol. 36 (1996) 1423-1438
[58] K. C. Chan, B. Q. Han and T. M. Yue, Acta Mater., Vol.44 (1996) 2515-1522
[59] T. G. Nieh, J. Wadsworth and T. Imai, Scripta Metall. Mater., Vol. 26 (1992) 703-708
[60] T. G. Nieh and J. Wadsworth, Mater. Sci. Eng., Vol. A147 (1991) 129-142
[61] M. Mabuchi and K. Higachi, Philos. Mag. Lett., Vol. 70 (1994) 1-6
[62] R. S. Mishra and A. K. Mukherjee, Scripta Metall. Mater., Vol. 25 (1991) 271-275
[63] R. S. Mishra and A. K. Mukherjee, Proc. “Superplasticity and superplastic forming”, ed. A. K. Ghosh and T. Bieler, (1995) 171-178
[64] R. S. Mishra, T. R. Bieler and A. K. Mukherjee, Acta Metall. Mater., Vol. 43 (1995) 877- 891
[65] R. S. Mishra, T. R. Bieler and A. K. Mukherjee, Acta Metall. Mater., Vol. 45 (1997) 561-568
[66] M. Mabuchi and K. Higachi, Scripta Mater., Vol. 34 (1996) 1893-1897
[67] K. Higachi, and M. Mabuchi, Mater. Sci. Eng., Vol. A176 (1994) 461-470
[68] H. Iwasaki, M. Mabuchi and K. Higachi, Mater. Sci. Tech., Vol. 12 (1996) 505-512
[69] H. Iwasaki, M. Mabuchi and K. Higachi, Acta Metall. Mater., Vol. 45 (1997) 2759-2764
[70] K. Higachi, Mater. Sci. Forum, Vol. 170-72 (1994) 131-140
[71] F. A. Mohamed, M. M. I. Ahmed and T. G. Langdon, Metall. Trans., Vol. 8A (1977) 933-938
[72] H. Glieiter, “Deformation of Polycrystals: Mechanisms and Microstructures”, ed. N. Hansen, A. Horsewell, T. Leffers and H. Lilholt, (1981) 15-21
[73] P. G. Sanders, G. E. Fougere, L. J. Thompson, J. A. Eastman and J. R. Weertman, Nanostruct. Mater., Vol. 8 (1997) 243-252
[74] M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, Mater. Sci. Forum, Vol. 204-206 (1996) 431-436
[75] R. Z. Valiev and N. K. Tsenev, “Structure and Superplasticity of Al-based Submicron Grained Alloys”, ed. T. G. Langdon, H. D. Merchant, J. G. Morris and M. A. Zaidi, (1991) 319-329
[76] R. Z. Valiev, Mater. Sci. Forum, Vol. 243-245 (1997) 207-216
[77] H. Yamagata and T. Koike, J. Japan Inst. Light Met., Vol. 48 (1998) 52-59
[78] K. B. Rudman and J. E. Hilliard, Acta Metall., Vol. 15 (1967) 1025
[79] D. Schwahn and Schmatz, Acta Metall., Vol. 26 (1978) 1571
[80] R. Kroggel, H. Loffler and O. Kabisch, Physica Status Solidi (A), Vol. 40 (1977) 163
[81] K. G. Satyanarayana, J. Mater. Sci., Vol. 16 (1981) 1233
[82] R. P. Wahi and T. R. Anatharaman, Scriota Metall., Vol. 2 (1968) 681
[83] M. Vijayalakshmi, V. Seetharaman and V. S. Raghunathan, J. Mater. Sci., Vol. 17 (1982) 126
[84] H. Loffer, C. Eschrich and O. Simmich, Phsica Status Solidi (A), Vol. 113 (1989) 269
[85] J. W. Cahn, Acta Metall., Vol. 9 (1961) 795
[86] J. W. Cahn, Acta Metall., Vol. 10 (1962) 179
[87] J. W. Cahn, Acta Metall., Vol. 14 (1966) 1685
[88] J. L. Murry, Bull, Alloy Phase Diagr., Vol. 4 (1983) 55
[89] D. T. Lewandowski and K. B. Rudman, Metall. Trans., Vol. 6A (1975) 1895
[90] H. Loffer and O. Simmich, Phsica Status Solidi (A), Vol. 30 (1975) 495
[91] L. J. Van der Toorn and T. J. Tiedema, Acta Metall., Vol. 8 (1960) 711
[92] M. Vijayalakshmi, V. Seetharaman and V. S. Raghunathan, Acta Metall., Vol. 32 (1984) 1371
[93] Fu-Wen Ling, Thermomechanical Processing of Aluminum Alloys, AIME, (1978) 210-222

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top