跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉宜賢
研究生(外文):Yi-Hsian Liu
論文名稱:Li-Mn-V-O鋰離子二次電池正極材料研究
論文名稱(外文):Study of Li-Mn-V-O Lithium Ion Secondary Batteries Positive Electrode Material
指導教授:胡毅胡毅引用關係
指導教授(外文):Yi Hu
學位類別:碩士
校院名稱:大同工學院
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:71
中文關鍵詞:鋰離子二次電池摻雜尖晶石結構階壓差電容量循環性
外文關鍵詞:lithium ion rechargeable batteriesdopingspinel structurestep differencecapacitycycle performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子二次電池由於電容量高,充放電壓高以及重量輕等因素,已成為未來發展應用之最佳儲能電池之一。構成電池的主要三部分:正極材料、負極材料以及電解質,對電子的充放電性質均有決定性之影響。本實驗目的則針對Li-Mn-V-O系正極材料作有系統之研究。
實驗結果顯示:以LiNO3·H2O、MnCO3、NH4VO3為起始物,於350℃煆燒5小時可合成尖晶石結構化合物。隨著煆燒溫度上升或釩離子摻雜量增加,會造成錳離子由+4價轉變為+3價,而較大離子半徑之Mn3+增加使得晶格常數隨之增加。當轉換成Mn3+超過飽和量時,生成的缺陷反而造成LiMn2-δVδO4之晶格常數變小。
由充放電分析結果,發現經550℃煆燒所得LiMn2O4產物之4.15-4.0V之階壓差較為緩和,其穩定充放電電容量可達95mAh/g。釩離子之摻雜不僅使4.15-4.0V之階壓差更為明顯,且使得充放電電容量及循環性下降。雖然釩離子之摻雜不利於4V充放電平台,但由循環伏安曲線發現有助於提升3V平台之電容量。

Since lithium ion rechargeable batteries are high energy stored capacity, high discharge potential and lighten weight, they become to be one of the advanced batteries for developing in the future. There are three main parts to construct the battery: positive material, negative material and electrolyte and they all have the determinative effects on the recharge-discharge properties of batteries. The objective of this experience is to systematically study the Li-Mn-V-O system positive materials.
The results indicated that spinel structure compound could be obtained after calcining LiNO3·H2O, MnCO3 and NH4VO3 mixed at 350℃ for 5hrs. Manganese ions would transfer from +4 to +3 with higher calcinated temperature or more doping vanadium concentration. Lattice constants increased as larger ionic radius of Mn3+ increased. Smaller lattice constants of LiMn2-δVδO4 would be due to the production of the lattice defects as over amount of saturated transference of Mn3+. From results of charge-discharge analysis, we can see that the at 4.15-4.0V step difference are much smoothly and stabilized charge-discharge capacity reach to 95mAh/g by the preparation of the LiMn2O4 at 550℃. Doping vanadium leads 4.15-4.0V step different clearly and leads capacity and cycle performance decreasing. And it also disadvantages 4V charge-discharged step, but this will increase capacity of 3V from cyclic voltametry curves.

Abstract
Contents
List of Table
List of Figure
I Introduction
II LITERATURE SURVEY
2.1 Historical development of solid state lithium batteries
2.2 Solid state primary lithium batteries
2.3 Solid state secondary lithium batteries
2.4 Secondary insertion cathode lithium batteries
2.5 Primary system verus secondary systems
2.6 Lithium metal-free rechargeable batteries
2.7 Lithium-ion (shuttlecock) batteries concept
2.8 Materials for 4-volt cathode
2.8-1 Crystal Structure of LiMeO2 (Me = Co, Co/Ni, Ni)
2.8-2 Crystal Structure of LiMn2O4
2.9 Solid State Sodium Batteries
III EXPErimental procedures
3.1 Sample preparation
3-2 Characterization analysis
3.2-1 DTA
3.2-2 XRD and Lattice parameter measurement
3.2-3 EPR
3.2-4 FTIR
3.2-5 AA
3.3 Fabrication of cell
3.3-1 The preparation of positive electrode
3.3-2 Fabrication of T-type cells
3.3-3 Fabrication of coin cells
3.4 Electrochemical test
3.4-1 Testing of charge and discharge
3.4-2 Measurement of cyclic voltametry
IV Results and discussion
4.1 DTA
4.1-1 LiMn2-δVδO4
4.1-2 LiMn2O4-yV2O5
4.2 XRD
4.2-1 LiMn2O4
4.2-2 LixMn2O4
4.2-3 LiMn2-δVδO4
4.2-4 LiMn2O4-yV2O5
4.3 Lattice parameter
4.3 EPR
4.4 FTIR
4.5 AA
4.6 charge and discharge
4.6-1 coin cells
4.6-2 T-type cells
4.7 CV
V conclusion
VI Reference

1. K. M. Abraham and S. B. Brummer, “Lithium Battery”, Edited by J. P. Gabano, Academic Press, London, (1983).
2. T. Nagaura and K. Tozawa, Prog. Batteries Solar Cells, 9(1990), 209-214.
3. Lundblad, and B. Bergman, Solid State Ionics, 96(1997), 173.
4. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, 783(1980), 15.
5. L. D. Dyer, B. S. Borie and G. P. Smith, J. Am. Chem. Soc., 1499(1954), 78.
6. Y. Xia, and M. Yoishio, J. Electrochem. Soc., 144(1997), 4186.
7. X. Qiu, X. Sun, W. Shen, N. Chen, Solid State Ionics, 93(1997), 335.
8. M. M. Doeff, Thomas J. Richardson, and Larry Kepley, J. Electrochem. Soc., 2507(1996)
9. W. D. Johnston and R.R.Heikes, J.Am.Chem.Soc., 78(1956)3255.
10. R. Jasinski, High-Energy Batteries (Plenum Press. New York, 1967).
11. J.Moser, U. S. Patent 3, 660, 163 (1972); A. A. Schneider and J. Moser, U. S. Patent 3, 674, 562 (1972).
12. R. Selim and P. Bro, J. Electrochem. Soc. 121 (1974) 1467.
13. v. Fraioly, W. A. Barber and A. M. Feldman. U. S. Patent 3, 551, 205 (1970).
14. H. Ikeda, T. Saito and H. Tamura, in: Proc. Manganese Dioxide Symposium, Vol. 1, eds. A. Kozawa and R. H. Brodd (I. C. Sample Office, Cleveland, OH, 1975).
15. M. Fukuda and T. Iijima, in: Power Sources, Vol. 5 ed. D. H. Collins (Academic Press, London, 1975) p. 713.
16. E. S. Buzzelli, U. S. Patent 3, 445, 288 (1969).
17. M. S. Whittingham, Science 192 (1976) 1126.
18. Adv. Batt. Technology 25, No. 10 page 4, (1989).
19. T. Nagaura, in: Proc. 5th Intern. Seminar on Lithium Battery Technology and Applications, Deerfield Beach, Fl, March 5-7, 1990.
20. JEC Battery Newsletter, Sony Corporation Battery Group and Sony Energytec, July-August (1993) p. 19.
21. Skarstad, P. M. and Schmidt, C. L., J. Electrochem. Soc.,1990, 137, 367C.
22. Liang, C. C.,Joshi, A. V., and Hamilton, W. E., J. Appl. Electrochem., 1978, 8, 445.
23. Park, K. H., Miles, M. H., Bliss, D. E., Stilwell, D., Hollins, R. A., J. Electrochem. Soc. 1988, 135, 2901.
24. Skarstad, P. M. and Schmidt, C. L., J. Electrochem. Soc., 1990, 137, 367C.
25. Liang, C. C., Joshi. A. V., and Hamilton, W. E., J. Appl. Electrochem., 1978, 8, 445.
26. Matsuda, M., J. Electrochem. Soc., 1984, 131, 104.
27. Akridge, J. R. and Vourlis, H., in Micro-Solid State Batteries, NATO ASI Series, Ser. B217, Akridge, J. R. and Balkanski, M., Eds., Plenum Press, New York, 1990, 353.
28. Akridge, J. R. and Vourlis, H., in Micro-Solid State Batteries, NATO ASI Series, Ser. B217.
29. Anderman, M., Lundquist, J. T., Johnson, S. L., and Giovannoi, T. R., J. Power Source, 26(1989), 309.
30. Abraham, K. M., Pasquariello, D. M., and Schwartz, D. A., J. Power Source, 26(1989), 247.
31. P. M. Shah, Proc. 27th Int. Power Sources Symp., 59(1976).
32. Koshita, N., Ikehata, T., and Takata, K., J. Electrochem. Soc., 137(1990), 369C.
33. Labat, J., Dechenaux, V., Jumel, Y. and Gabano, J. P., J. Electrochem. Soc., 134(1987), 406C.
34. Yoshimatsu, I., Hirai, T., and Yamaki, J., J. Electrochem. Soc., 135(1988), 2422.
35. Selim, R. and Bro, P., J. Electrochem. Soc., 121(1974), 1457.
36. Murphy, D. W., DiSalvo, F. J., Carides, J. N., and Waszszak, J. V., Mater. Res. Bull., 13(1978), 1395.
37. Guyomard, D. and Tarascon, J. M., J. Electrochem. Soc., 139(1992), 937.
38. Dahn, J. R., Von Sacken, U., Juzhow, M. W., and Al-Janaby, H., J. Electrochem. Soc., 138(1991), 2207.
39. M. M. Thackeray, private communication.
40. K. Mizushima, P. C. Jones, P. C. Wiseman, and J. B. Goodenough, Mat. Res. Bull., 15, 783(1980).
41. T. Nagaura, Process in Batteries & Battery Materials, 10, 209(1991).
42. Y. Gao and J. R. Dahn, J. Electrochem. Soc., Vol. 143, pp.100-114 (1996).
43. Y. Gao and J. R. Dahn, J. Electrochem. Soc., vol. 143, pp.1783-1788 (1996).
44. Y. Xia and M. Yoshio, J. Electrochem. Soc., vol. 143, pp.825-833 (1996).
45. N. Kumagai, T. Fujiwara, K. Tanno, and T. Horiba, J. Electrochem. Soc., 143 (1996) 1007.
46. N. Kumagai, H. Ooto and N. Kumagai, J. Power Sources, 68, 603 (1997).
47. M. Wakihara, L. Guyomard, H. Ikuta, and T. Uchida, Solid State Ionics, 86, 907 (1996).
48. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, and J. R. Dahn, J. Electrochem. Soc.,144, 205 (1997).
49. Y. Ein-Eli and W. F. Howard, J. Electrochem. Soc., 144, L205 (1997).
50. W. I. F. David and R. M. Ibberson, Mat. Res. Rull., 25, 657-664(1990).
51. G. T. K. Fey, W. Lin, and J. R. Dahn, J. Electrochem. Soc., 141 [9] 2279(1994).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top