跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:麥如村
研究生(外文):Ru-Tsun
論文名稱:C型肝炎病毒核心蛋白對人類巨細胞病毒MIE啟動子活性之影響
論文名稱(外文):Effects of HCV Core Protein on HCMV MIE Promoter Activity
指導教授:吳妍華
指導教授(外文):Yan-Hwa Wu Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:55
中文關鍵詞:人類巨細胞病毒C型肝炎病毒C型肝炎病毒核心蛋白轉錄調控
外文關鍵詞:Human cytomegalovirusHepatitis C virusHCV core proteintranscription regulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
C型肝炎病毒已被證實為大部分輸血性非A非B型肝炎的病原,其可持續感染宿主相當長的時間,並經由未知的致病機轉發展為慢性肝炎、肝硬化及肝癌。目前研究證實C型肝炎病毒核心蛋白是一功能多樣性的蛋白,除構成病毒顆粒的蛋白質外鞘外,對於許多細胞內或其它病毒的啟動子具有調控作用,並與許多細胞內的蛋白有交互作用,因此推測C型肝炎病毒的致病機轉可能經由核心蛋白與細胞因子交互作用而達成,但其分子機制尚待釐清。
人類巨細胞病毒為一隨處可見的病毒,在人口中的盛行率相當高,感染後通常造成終身帶原,其感染或復發只在胎兒或免疫功能不全的病人造成嚴重甚至致命的疾病。人類巨細胞病毒在宿主細胞中能否表現病毒基因及複製遺傳物質,與迅早期基因能否被活化有重要的關係,迅早期基因的活化是由人類巨細胞病毒MIE啟動子所調控,因此對於MIE啟動子表現活性及其調控機制的研究,有助於人類巨細胞病毒的潛伏感染及再活化之瞭解。
分析C型肝炎核心蛋白對人類巨細胞病毒MIE啟動子之影響有二層意義,其一是利用MIE啟動子上眾多轉錄因子的結合位置,研究核心蛋白調控細胞內或其它病毒啟動子之可能分子機轉,藉以了解核心蛋白與細胞因子交互作用的情形;其二是流行病學的調查顯示此二種病毒在器官移植後,一再復發是造成器官移植病人死亡的危險因子,若同時存在可能造成更嚴重的後果,而研究這二種病毒之病毒因子間交互作用的分子機制,將有助於預防及治療的參考。
在本論文中利用報導基因分析C型肝炎病毒核心蛋白在HuH-7細胞中對人類巨細胞病毒MIE啟動子(-760~+3)之影響,發現表現核心蛋白之質體比率較高時,對報導基因有抑制作用,表現核心蛋白之質體比率較低時對報導基因則有明顯活化作用(1.6~4.3倍),因此核心蛋白對於MIE啟動子具有顯著的雙向調控作用。此外,於HuH-7細胞中核心蛋白對四個刪除突變MIE啟動子(分別包含長度片段-736~+2、-541~+2、-246~+2及-54~+2)仍保有活化的作用;而於HeLa細胞中除對pMIEP-54/2無影響外,對其餘刪除突變之MIE啟動子有些微的活化作用。此實驗並無法定出核心蛋白活化MIE啟動子必要之區域,但在此二種細胞中,核心蛋白對於四個刪除突變之MIE啟動子活化作用之形式並不相同。若以具有持續表現核心蛋白之HuH-7/C190及HeLa/C190細胞進行實驗,則發現核心蛋白對於刪除突變之MIE啟動子,除HeLa/C190細胞中對pMIEP-54/2無影響外,都具有明顯抑制作用。在此同樣也可以發現這二種細胞中,核心蛋白對於四個刪除突變之MIE啟動子抑制作用形式不同,因此可推測其在不同細胞株中,核心蛋白對於MIE啟動子之調控具有細胞專一性(cell-type specificity)。而值得一提的是,在短暫細胞轉染及持續表現細胞株轉染實驗所得到的結果並不一致。
以EMSA實驗結果證實核心蛋白對轉錄因子YY1、Sp1及CREB之DNA辨識序列結合能力會有影響,在HuH-7/C190細胞中這三個因子的DNA-蛋白質複合物有明顯增加的情形,在HeLa/C190細胞中則為減弱(YY1及CREB)或無影響(Sp1),且許多證據顯示這些DNA-蛋白質複合物可能是許多轉錄因子藉由蛋白質間互相作用而形成的巨大複合物。將EMSA實驗結果與西方點墨法互相比較,在大部分的情形下對DNA-蛋白質複合物增加或減弱並不是藉由影響轉錄因子YY1、Sp1及CREB在細胞中表現的含量所造成,但對CREB在HuH-7/C190細胞中而言則不能排除此可能性。
綜合上述結果顯示,C型肝炎病毒核心蛋白具有調控人類巨細胞病毒MIE啟動子之活性,且此種活性具有細胞專一性;此外,C型肝炎病毒核心蛋白影響某些轉錄因子在細胞中的含量,並可能影響細胞內轉錄因子複合物的形成,這些作用同樣具有細胞專一性。因此核心蛋白在C型肝炎病毒致病機轉之分子機制中,扮演相當重要的角色。

Abstract
HCV (Hepatitis C virus) has been proven as being the major cause of trans-fusion-associated non-A, non-B hepatitis, and the prolonged, persistent infec-tion of HCV often progress to chronic hepatitis, cirrhosis, and hepatocellular carcinoma by unknown molecular pathogenesis. Several studies have demon-strated that the HCV core protein has a pleiotropic function and may play a major role in the pathogenesis of HCV infection, but the molecular mechanism was not well defined. Human cytomegalovirus (HCMV) is ubiquitous with very high prevalence in population. Co-infection with HCV and HCMV is therefore possible. Since the activation of the MIE promoter-enhancer is ex-pected to play pivotal roles in HCMV infection, a detailed understanding of the regulation of its expression activity may help us to gain important insights about latency and reactivation of HCMV infection.
Analysis of the effect of HCV core protein on HCMV promoter activity has two significances. First, utilizing binding sites of various transcription factors on HCMV MIE promoter may help us to elucidate the possible molecular mechanism for the regulatory activity of HCV core protein. Second, recurrence of HCV or HCMV infection or both after allograft transplant is risk factor for transplanted patients, investigation of the interaction between these two viral factors may provide important insights for prophylaxis and treatment.
In our results, the full-length HCV core protein (c195) has biphasic effects on HCMV MIE promoter in HuH-7 cells in transient transfection experiment, while the deletion mutants of core protein have slight (c122) or no (c101) effect. With lower expression level, the full-length HCV core protein has trans-activa-tion ability on HCMV MIE promoter (containing promoter region -760~+3), while it has trans-suppression effect with the higher expression level. Additionally, the full-length HCV core protein also has trans-activation ability on four deletion mutants of HCMV MIE promoter (containing promoter region -736~+2, -541~+2, -246~+2, and -54~+2, respectively) in HuH-7 cells. Apart from the MIE promoter region spanning -54 to +2 (pMIEP-54/2), similar re-sults were found in HeLa cells, but differ from that of HuH-7 cells in activation pattern. Interestingly, an opposite, significant suppression of HCMV promoter activity was observed in HuH-7 and HeLa core protein-producing cell lines (HuH-7 /C190 and HeLa/C190, respectively) except pMIEP-54/2 in HeLa/C190 cells. Thus, the regulatory activity of the HCV core protein on HCMV MIE promoter possesses cell-type specificity.
Using electrophoretic mobility shift assay (EMSA) I found that the expres-sion of HCV core protein could enhance the DNA binding activity of YY1, Sp1, and CREB in HuH-7/C190 cells. In HeLa/C190 cells, the DNA binding activity of YY1 and CREB was reduced by core protein, but no effect were found in Sp1-binding activity. The results also suggest that these DNA-protein complex-es are large complexes composed of different transcription factors through protein-protein interaction. Furthermore, Western bolt analysis indicated that these effects on DNA binding activity did not result from the alteration of ex-pression levels of YY1, Sp1, and CREB by the HCV core protein under most conditions, except in the case of CREB in HuH-7/C190 cells.
Taken together, the results demonstrate that the HCV core protein possesses transcriptional regulatory ability on HCMV MIE promoter. Additionally, core protein may alter the expression level of some transcription factors and en-hance or suppress the transcriptional complex formation in a cell-type specific manner. Therefore, our findings imply that HCV infection may alter the HCMV life cycle. Moreover, these features of core protein may at least par-tially account for its pleiotropic effects on regulation of gene expression and the molecular mechanism of HCV pathogenesis.

中文摘要--------------------------------------------------------------------------------------------------------1
英文摘要--------------------------------------------------------------------------------------------------------3
壹、緒論--------------------------------------------------------------------------------------------------------5
一、C型肝炎病毒(Hepatits C Virus, HCV)-------------------------------------------------------5
1. 概述----------------------------------------------------------------------------------------------5
2. C型肝炎病毒核心蛋白----------------------------------------------------------------------6
3. C型肝炎病毒核心蛋白與宿主細胞間的交互作用-----------------------------------7
二、人類巨細胞病毒(Human Cytomegalovirus, HCMV)--------------------------------------8
1. 概述-----------------------------------------------------------------------------------------------8
2. 人類巨細胞病毒之感染複製及基因表現-----------------------------------------------9
3. 人類巨細胞病毒MIE啟動子---------------------------------------------------------------11
三、研究目的及策略---------------------------------------------------------------------------------11
貳、實驗材料與方法---------------------------------------------------------------------------------------13
一、實驗材料:---------------------------------------------------------------------------------------13
1. 菌株---------------------------------------------------------------------------------------------13
2. 細胞株------------------------------------------------------------------------------------------13
3. 培養基與培養液-----------------------------------------------------------------------------13
4. 質體---------------------------------------------------------------------------------------------14
5. 溶液---------------------------------------------------------------------------------------------15
6. 化學藥品---------------------------------------------------------------------------------------16
7. 酵素---------------------------------------------------------------------------------------------16
8. 引子(Primer)-----------------------------------------------------------------------------------16
9. 放射性同位素--------------------------------------------------------------------------------17
10. 抗體--------------------------------------------------------------------------------------------17
二、實驗方法:---------------------------------------------------------------------------------------17
1. 大腸桿菌質體之轉形(Transformation)與抽取----------------------------------------17
2. 氯化銫(CsCl)密度梯度離心之質體製備-----------------------------------------------17
3. 聚合鏈鎖反應(Polymerase chain reaction, PCR)-----------------------------------18
4. 細胞培養---------------------------------------------------------------------------------------18
5. 細胞轉染(Transfection)---------------------------------------------------------------------18
6. Luciferase酵素活性分析-------------------------------------------------------------------19
7. 32P標記DNA探針之製備------------------------------------------------------------------19
8. Electrophoretic mobility shift assay (EMSA)---------------------------------------------19
9. SDS-聚丙烯醯胺凝膠電泳(Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, SDS-PAGE)-----------------------------------------------------------------20
10. 西方點墨法(Western blot)-----------------------------------------------------------------20
參、實驗結果-------------------------------------------------------------------------------------------------22
一、C型肝炎病毒核心蛋白對人類巨細胞病毒MIE啟動子之影響-----------------------22
二、C型肝炎病毒核心蛋白對刪除突變之人類巨細胞病毒MIE啟動子之影響-------23
1. 選殖人類巨細胞病毒MIE啟動子之刪除突變報導質體----------------------------23
2. Transient細胞轉染實驗----------------------------------------------------------------------24
3. C型肝炎病毒核心蛋白持續表現細胞株轉染實驗-----------------------------------24
三、以EMSA實驗觀察核心蛋白對轉錄因子DNA辨識序列結合能力之影響---------25
1. YY1探針之EMSA實驗-----------------------------------------------------------------------25
2. Sp1探針之EMSA實驗------------------------------------------------------------------------26
3. CREB探針之EMSA實驗---------------------------------------------------------------------26
四、轉錄因子YY1、Sp1及CREB在核心蛋白持續表現細胞中之含量-------------------27
肆、討論---------------------------------------------------------------------------------------------------------29
一、C型肝炎病毒核心蛋白對人類巨細胞病毒MIE啟動子具有雙向調控作用--------29
二、核心蛋白對刪除突變之MIE啟動子在不同細胞株中活化作用之形式不同-------30
三、短暫細胞轉染及持續表現細胞株轉染實驗所得到的結果並不一致----------------30
四、核心蛋白影響轉錄因子複合物的形成------------------------------------------------------32
伍、參考文獻---------------------------------------------------------------------------------------------------34
圖表----------------------------------------------------------------------------------------------------------------43

Arbustini, E., B. Dal Bello, P. Morbini, C. Klersy, M. Grasso, M. Diegoli, A. Ga-vazzi, C. Campana, P. Grossi, C. Pellegrini, L. Martinelli, G. Ippoliti, G. Spec-chia, and M. Vigano. 1997. Factors increasing the risk of allograft vascular disease in heart transplant recipients. G. Ital. Cardiol. 27:985-999.
Boshart, M., F. Weber, G. Jahn, K. Dorsch-Hasler, B. Fleckestein, and W. Schaff-ner. 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521-530.
Chan, P. K., F. Y. Chan, S. W. Morris, and Z. Xie. 1997. Isolation and characteriza-tion of the human nucleophosmin/B23 (NPM) gene: identification of the YY1 binding site at the 5' enhancer region. Nucleic Acid Res. 25:1225-1232.
Chang, S.-C., J.-H. Yen, H.-Y. Kang, M.-H Jang, M.-F. Chang. 1994. Nuclear lo-calization signals in the core protein of hepatitis C virus. Biochem. Biophys. Res. Commun. 205:1284-1290.
Chazouilleres, O., and T. L. Wright. 1995. Hepatitis C and liver transplantation. J. Gastroenterol. Hepatol. 10:471-480.
Chee, M., A. Bankier, S. Beck, R. Bohni, C. Brown, R. Cerny, T. Horsnell, C. Hutchison, T. Kouzarides, and J. Martignetti. 1990. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Micro-biol. Immunol. 154:125-169.
Chen, C.-M., L.-R. You, L.-H. Hwang, and Y.-H. Wu Lee. 1997. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-b receptor modulates the signal pathway of the lymphotoxin-b receptor. J. Virol. 71:9417-9426.
Cherrington, J. M., and E. S. Mocarski. 1989. Human cytomegalovirus ie1 trans-activates the alpha promoter-enhancer via an 18-base-pair repeat element. J. Virol. 63: 1435-1440.
Cherrington, J. M., E. L. Khoury, and E. S. Mocarski. 1991. Human cytomegalo-virus ie2 negatively regulates a gene expression via a short target sequence near the transcription start site. J. Virol. 65:887-896.
Choo, Q.-L., G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Hough-ton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359-362.
Choo, Q.-L., G. Kuo, A. J. Weiner, K.-S. Wang, L. Overby, D. Bradley, and M. Houghton. 1992. Identification of the major, parenteral non-A, non-B hepatitis agent (hepatitis C virus) using a recombinant cDNA approach. Semin. Liver Dis. 12:279-288.
Choo, Q.-L., K. H. Richman, J. H. Han, K. Berger, C. Lee, C. Dong, C. Gallegos, D. Coit, A. Medina-Selby, P. J. Barr, A. J. Weiner, D. W. Bradley, G. Kuo, and M. Hougton. 1991. Genetic organization and diversity of the hepatitis C virus. Proc. Natl. Acad. Sci. USA 88:2451-2455.
D'Aquila, R. T., G. S. Hayward, and W. C. Summers. 1989. Physical mapping of the human cytomegalovirus (HCMV) (Towne) DNA polymerase gene: DNA-mediated transfer of a genetic marker for an HCMV gene. Virology 171:312-316.
Dal Bello, B., C. Klersy, P. Grossi, A. Gavazzi, G. Ippoliti, M. Rinaldi, M. Vigano, and E. Arbustini. 1998. Combined human cytomegalovirus and hepatitis C virus infections increase the risk of allograft vascular disease in heart transplant recipients. Transplant. Proc. 30:2086-2090.
Depto, A. S., and R. M. Stenberg. 1989. Regulated expression of the human cyto-megalovirus pp65 gene: octamer sequence in the promoter is required for activation by viral gene products. J. Virol. 63:1232-1238.
Drew, W. L., E. S. Sweet, R. C. Miner, and E. S. Mocarski. 1984. Multiple infec-tions by cytomegalovirus in patients with acquired immunodeficiency symdrome: documentation by Southern blot analysis. J. Infect. Dis. 150:952-953.
Ebeling, A., G. Keil, B. Nowak, B. Fleckenstein, N. Berthelot, and P. Sheldrick. 1983. Genome structure and virion polypeptides of the primate herpesvirus Herpesvi-rus aotus types 1and 3: comparison with human herpesvirus. J. Virol. 45: 715-726.
Feinstone, S. M., A. Z. Kapikian, and R. H. Purcell. 1975. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N. Engl. J. Med. 292:767-770.
Fiala, M., J. E. Payne, T. V. Berne, T. C. Moore, T. C. Henle, J. Z. Montgomerie, S. N. Chatterjee, and L. B. Guze. 1975. Epidemiology of cytomegalovirus infection after transplantation and immunosuppression. J. Infect. Dis. 132:421-433.
Fleckenstein, B., I. Muller, and J. Collins. 1982. Cloning of the complete human cytomegalovirus genome in cosmids. Gene 18:39-46.
Ghazal, P., H. Lubon, and L. Hennighausen. 1988. Multiple sequence-specific tran-scription factors modulated cytomegalovirus enhancer activity in vitro. Mol. Cell. Biol. 8:1809-1811.
Ghazal, P., H. Lubon, and L. Hennighausen. 1988. Specific interactions between transcription factors and promoter-regulatory region of the human cytomegalovirus major immediate-early gene. J. Virol. 62:1076-1079.
Ghazal, P., H. Lubon, B. Fleckenstein, and L. Hennighausen. 1987. Binding of transcription factors and creation of a large nucleoprotein complex on the human cy-tomegalovirus enhancer. Proc. Natl. Acad. Sci. USA 84:3658-3662.
Ghazal, P., H. Lubon, C. Reynolds-Kohler, L. Hennighausen, and J. A. Nelson. 1990. Interactions between cellular regulatory proteins and a unique sequence region in the human cytomegalovirus major immediate early promoter. Virolgy 174: 18-25.
Grakoui, A., C. Wychowski, C. Lin, S. M. Feistone, and C. M. Rice. 1993. Expres-sion and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67:1385-1395.
Han, J. H., V. Shyamala, K. H. Richman, M. J. Brauer, B. Irvine, M. S. Urdea, P. Tekamp-Olson, G. Kuo, Q.-L. Choo, and M. Houghton. 1991. Characterization of the terminal regions of hepatitis C viral RNA: identification of conserved sequences in the 5' untranslated region and poly(A) tails at the 3' end. Proc. Natl. Acad. Sci. USA 88:1711-1715.
Harada, S., Y. Watanabe, K. Takeuchi, T. Suzuki, T. Katayama, Y. Takebe, I. Saito, and T. Miyamura. 1991. Expression of processed core protein of hepatitis C virus in mammalian cells. J. Virol. 65:3015-3021.
Hermiston, T. W., C. L. Malone, and M. F. Stinski. 1990. Human cytomegalovirus immediate-early two protein region involved in negative regulation of the major im-mediate-early promoter. J. Virol. 64:3532-3536.
Hijikata, M., N. Kato, Y. Ootsuyama, M. Nakagawa, and K. Shimotohno. 1991. Gene mapping of the processing of a putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc. Natl. Acad. Sci. USA 88:5547-5551.
Hunninghake, G. W., M. M. Monick, B. Liu, and M. F. Stinski. 1989. The pro-moter-regulatory region of the major immediate-early gene of human cytomegalo-virus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J. Virol. 63:3026-3033.
Hussy, P., H. Langen, J. Mous, and H. Jacobsen. 1996. Hepatitis C virus core pro-tein: carboxyl-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224:93-104.
Ibanez, C. E., R. Schrier, P. Ghazal, C. Wiley, and J. A. Nelson. 1991. Human cy-tomegalovirus productively infects primary differentiated macrophages. J. Virol. 65: 6581-6588.
Inouye, C. J., and E. Seto. 1994. Relief of YY1-induced transcriptional repression by protein-protein interaction with the nuclear phosphoprotein B23. J. Biol. Chem. 269:6506-6510.
Inshauspe, G., S. I. Zebedee, D. H. Lee, M. Sugitani, M. Nasoff, and A. M. Prince. 1991. Genomic structure of human prototype strain H of hepatitis C virus: comparison with American and Japanese isolates. Proc. Natl. Acad. Sci. USA 88:10292-10296.
Jacobson, M. A., and J. Mills. 1988. Serious cytomegalovirus disease in the ac-quired immunodeficiency symdrome (AIDS). Clinical findings, diagnosis, and treat-ment. Ann. Intern. Med. 108:585-594.
Jeang, K. T., D. R. Rawlins, P. J. Rosenfeld, J. H. Shero, T. J. Kelly, and G. S. Hayward. 1987. Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of simian and human cytomegalo-virus. J. Virol. 61:1559-1570.
Kato, N., M. Hijikata, Y. Ootsuyama, M. Nakagawa, S. Ohkoshi, T. Sugiura, and K. Shimotohono. 1990. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc. Natl. Acad. Sci. USA 87:9524-9528.
Kim, W. D., R. Suzuki, T. Harada, I. Saito, and T. Miyamura. 1994. Trans-suppression of gene expression by hepatitis C viral core protein. Jpn. J. Med. Sci. Biol. 47:211-220.
Kinney, j. S., I. M. Onorato, J. A. Stewart, R. F. Pass, S. Stagno, S. H. Cheeseman, J. Chin, M. L. Kumar, A. S. Yaeger, K. L. Herrmann, E. S. Hurwittz, and L. B. Schonberger. 1985. Cytomegaloviral infection and disease. J. Infect. Dis. 51:772-774.
Klucher, K. M., and D. H. Spector. 1990. The human cytomegalovirus 2.7-kilobase RNA promoter contains a functional binding site for the adenovirus major late tran-scription factor. J. Virol. 64:4189-4198.
Klucher, K. M., D. K. Rabert, and D. H. Spector. 1989. Sequences in the human cytomegalovirus 2.7-kilobase RNA promoter which mediate its regulation as an early gene. J. Virol. 63:5334-5343.
Klucher, K. M., M. Sommer, J. T. Kadonaga, and D. H. Spector. 1993. In vivo and in vitro analysis of transcriptional activation mediated by the human cytomegalovirus major immediate-early proteins. Mol. Cell Biol. 13:1238-1250.
Knodell, R. G., M. E. Conard, and J. L. Dienstag. 1975. Etiological spectrum of post-transfusion hepatitis. Gastroenterology 69:1278-1285.
Kothari, S., J. Baillie, J. G. Sissons, and J. H. Sinclair. 1991. The 21 bp repeat ele-ment of the human cytomegalovirus major immediate early enhancer is a negative regulator of gene expression in undifferentiated cells. Nucleic Acid Res. 19:1767-1771.
Kouzarides, T., A. T. Bankier, S. C. Satchwell, E. Preddy, and B. G. Barrell. 1988. An immediate early gene of human cytomegalovirus encodes a potential membrane glycoprotein. Virology 165:151-164.
Kumar, U., D. Cheng, H. Thomas, and J. Monjardino. 1992. Cloning and sequen-cing of the structural region and expression of putative core gene of hepatitis C virus from a British case of chronic sporadic hepatitis. J. Gen. Virol. 73:7071-7075.
Kuo, G., Q.-L. Choo, and H. J. Alter. 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244:362-364.
LaFemina, R., and G. S. Hayward. 1988. Differences in cell-type-specific blocks to immediate early gene expression and DNA replication of human, simian, and murine cytomegalovirus. J. Gen. Virol. 69:355-374.
Lanford, R. E., L. Notvall, D. Chavex, R. White, G. Frenzel, C. Simonsen, and J. Kim. 1993. Analysis of hepatitis C virus capsid, E1, and E2/NS1 proteins expressed in insect cells. Virology 197:225-235.
Lang, D., H. Fickenscher, and T. Stamminger. 1992. Analysis of proteins binding to the proximal region of the human cytomegalovirus IE-1/2 enhancer/promoter reveals both consensus and aberrant recognition sequences for transcription factors Sp1 and CREB. Nucleic Acid Res. 20:3287-3295.
Lee, J.-S., K. M. Galvin, and Y. Shi. 1993. Evidence for physical interaction be-tween the zinc-finger transcription factors YY1 and Sp1. Proc. Natl. Acad. Sci. USA 90:6145-6149.
Liu, R., J. Baillie, J. G. Sissons, and J. H. Sinclair. 1994. The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major im-mediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acid Res. 22:2453-2459.
Lo, S.-Y., F. Masiarz, S. B. Hwang, M. M. C. Lai, and J.-H. Ou. 1995. Differential subcellular localization of hepatitis C virus core gene products. Virology 213:455-461.
Macias, M. P., L. Huang, P. E. Lashmit, and M. F. Stinski. 1996. Cellular or viral protein binding to a cytomegalovirus promoter transcription initiation site: effects on transcription. J. Virol. 70:3628-3635.
Maciejewski, J. P., E. E. Bruening, R. E. Donahue, E. S. Mocarski, N. S. Young, and S. C. St Jeor. 1992. Infection of hematopoietic progenitor cells by human cyto-megalovirus. Blood 80:170-178.
Malone, C. L., D. H. Vesole, and M. F. Stinski. 1990. Transactivation of a human cytomegalovirus early promoter by gene products from the immediate-early gene IE2 and augmentation by IE1: mutational analysis of the viral proteins. J. Virol. 64:1498-1506.
Matsumoto, M., T.-Y. Hsien, N. Zhu, T. Vanarsdale, S. B. Hwang, K.-S. Jeng, A. E. Gorbulenya, S.-Y. Lo, J.-H. Ou, C. F. Ware, and M. M. C. Lai. 1997. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-b receptor. J. Virol. 71:1301-1309.
Miller, R. H., and R. H. Purcell. 1990. Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proc. Natl. Acad. Sci. USA 87:2057-2061.
Mocarski, E. S. 1996. Cytomegalovirus and their replication. In "Field Virology." (B. N. Fields, D. M. Knipe, and P. M. Howley, Eds.), pp. 2447-2492. Lippincott-Raven, Philadelphia.
Mocarski, E. S., L. Pereira, and A. L. McCormick. 1988. Human cytomegalovirus ICP22, the product of the HWLF1 reading frame, is an early nuclear protein that is released from cells. J. Gen. Virol. 69:2613-2621.
Moriya, K., H. Fujie, Y. Shintani, H. Yotsuyanagi, T. Tsutsumi, K. Ishibashi, Y. Matsuura, S. Kimura, T. Miyamura, and K. Koike. 1998. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nature Med. 4:1065-1067.
Moriya, K., H. Yotsuyanagi, Y. Shintani, H. Fujie, K. Ishibashi, Y. Matsuura, T. Miyamura, and K. Koike. 1997. Hepatitis C virus core protein induces hepatic ste-atosis in transgenic mice. J. Gen. Virol. 78:1527-1531.
Nakashima, O., S. Sugihara, M. Kage, and M. Kojiro. 1995. Pathomorphologic characteristics of small hepatocellular carcinoma: a special reference to small hepato-cellular carcinoma with distinct margins. Hepatology 22:101-105.
Nelson, J. A., C. Reynolds-Kohler, and B. A. Smith. 1987. Negative and positive regulation by a short segment in the 5'-flanking region of the human cytomegalovirus major immediate-early gene. Mol. Cell Biol. 7:4125-4129.
Niller, H. H., and L. Hennighausen. 1990. Phytohemagglutinin-induced activity of cyclic AMP (cAMP) response element from cytomegalovirus is reduced by cyclo-sporine and synergistically enhanced by cAMP. J. Virol. 64:2388-2391.
Okamoto, H., H. Takita, M. Sakamoto, M. Horikita, M. Kejima, H. Iizuka, and S. Mishiro. 1993. Characterization of the genomic sequence of type V (or 3a) hepatitis C virus isolates and PCR primers for specific detection. J. Gen. Virol. 74:2385-2390.
Okamoto, H., S. Okada, Y. Sugiyama, K. Kurai, H. Iizuka, A. Machida, Y. Mi-yamura, and m. Mayumi. 1991. Nucleotide sequence of the genomic RNA of hepa-titis C virus isolated from a human carrier: comparison with reported isolates for con-served and divergent regions. J. Gen. Virol. 72:2697-2704.
Pasquinelli, C., J. M. Shoenberger, J. Chung, K.-M. Chang, L. G. Guidotti, M. Selby, K. Berger, R. Lesniewski, M. Houghton, and F. V. Chisari. 1997. Hepatitis C Virus core and E2 protein expression in transgenic mice. Hepatology 25:719-727.
Pizzorno, M. C., and G. S. Hayward. 1990. The IE2 gene products of human cyto-megalovirus specifically down-regulate expression from the major immediate-early promoter through a target sequence located near the cap site. J. Virol. 64:6154-6165.
Pizzorno, M. C., P. O'Hare, L. Sha, R. L. LaFemina, and G. S. Hayward. 1988. Trans-activation and autoregulation of gene expression by the immediate-early region 2 gene products of human cytomegalovirus. J. Virol. 62:1167-1179.
Prince, A. M., B. Brotman, and G. F. Grady. 1974. Long-incubation post-transfusion hepatitis without serological evidence of exposure to hepatitis B virus. Lacent 2:241-246.
Ralston, R., K. Thudium, K. Berger, C. Kuo, B. Gervase, J. Hall, M. Selby, G. Kuo, M. Houghton. 1993. Characterization of hepatitis C virus envelope glyco-protein complexes expressed by recombinant vaccinia viruses. J. Virol. 67:6753-6761.
Ray, R. B., L. M. Lagging, K. Meyer, and R. Ray. 1996. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumori-genic phenotype. J. Virol. 70:4438-4443.
Ray, R. B., L. M. Lagging, K. Meyer, R. Steele, and R. Ray. 1995. Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res. 37:209-220.
Ray, R. B., R. Steele, K. Meyer, and R. Ray. 1997. Transcriptional repression of p53 promoter by hepatitis C virus core protein. J. Biol. Chem. 272:10983-10986.
Ray, R. B., R. Steele, K. Meyer, and R. Ray. 1998. Hepatitis C virus core protein represses p21WAF/Cip1/Sid1 promoter activity. Gene 208:331-336.
Regenstein, F. 1994. New approaches to the treatment of chronic viral hepatitis B and C. Am. J. Med. 96(suppl):47-51.
Rice, G. P., R. D. Schrier, and M. B. Oldstone. 1984. Cytomegalovirus infects hu-man lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proc. Natl. Acad. Sci. USA 81:6134-6138.
Roizman, B. 1996. Herpesviridae. In "Field Virology." (B. N. Fields, D. M. Knipe, and P. M. Howley, Eds.), pp. 2221-2231. Lippincott-Raven, Philadelphia.
Rosen, H. R., S. Chou, C. L. Corless, D. R. Gretch, K. D. Flora, A. Boudousquie, S. L. Orloff, J. M. Rabkin, and K. G. Benner. 1997. Cytomegalovirus viremia: risk factor for allograft cirrhosis after liver transplantation for hepatitis C. Transplantation 64:721-726.
Sambucetti, L. C., J. M. Cherrington, G. W. Wilkinson, and E. S. Mocarski. 1989. NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral trans-activator and by T cell stimulation. EMBO J. 8:4251-4258.
Selby, M. J., Q.-L. Choo, K. Berger, G. Kuo, E. Glazer, M. Eckart, C. Lee, D. Chien, C. Kuo, and M. Houghton. 1993. Expression, identification and subcellular localization of protein encoded by hepatitis C viral genome. J. Gen. Virol. 74:1103-1113.
Seto, E., B. Lewis, and T. Shenk. 1993. Interaction between transcription factors Sp1 and YY1. Nature 365:462-464.
Shih, C.-M., C.-M. Chen, S.-Y. Chen, and Y.-H. Wu Lee. 1995. Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation. J. Vi-rol. 69:1160-1171.
Shih, C.-M., S.-J. Lo, T. Miyamura, S.-Y Chen, and Y.-H. Wu Lee. 1993. Suppres-sion of hepatitis B virus expression and replication by hepatitis C virus core protein in HuH-7 cells. J. Virol. 67:5823-5841.
Simmonds, P., F. Mcomish, P. L. Yap, S.-W. Chan, C. K. Lin, G. Dusheiko, A. A. Saeed, and E. C. Holmes. 1993. Sequence variability in the 5' non-coding region of hepatitis C virus: identification of a new virus type and restrictions on sequence diver-sity. J. Gen. Virol. 74:661-668.
Singh, N., A. Zeevi, T. Gayowski, and I. R. Marino. 1998. Late onset cytomegalo-virus disease in liver transplant recipients: de novo reactivation in recurrent hepatitis C virus hepatitis. Transpl. Int. 11:308-311.
Spaete, R. R., and E. S. Mocarski. 1985. Regulation of cytomegalovirus gene ex-pression: alpha and beta promoters are trans activated by viral functions in permissive human fibroblasts. J. Virol. 56:135-143.
Stamminger, T., E. Puchtler, and B. Fleckenstein. 1991. Discordant expression of the immediate-early 1 and 2 gene regions of human cytomegalovirus at early times after infection involves posttranscriptional processing events. J. Virol. 65:2273-2282.
Stango, S., R. F. Pass, M. E. Dworsky, R. E. Henderson, E. G. Moore, P. D. Walton, and C. D. Alford. 1982. Congenital cytomegalovirus infection: the relative importance of primary and recurrent maternal infections. N. Engl. J. Med. 306:945-949.
Staprans, S. I., D. K. Pabert, and D. H. Spestor. 1988. Identification of sequence requirements and trans-acting function necessary for regulated expression of a human cytomegalovirus early gene. J. Virol. 62:3463-3473.
Stehman-Breen, C. O., B. M. Psaty, S. Emerson, D. Gretch, M. Bronner, C. Marsh, and C. L. Davis. 1997. Association of hepatitis C virus infection with mor-tality and graft survival in kidney-pancreas transplant recipients. Transplantation 64:281-286.
Stenberg, R. M., P. R. Witte, and M. F. Stinski. 1984. Structural analysis of the major immediate early gene of human cytomegalovirus. J. Virol. 49:190-199.
Stinski, M. F. 1978. Sequence of protein synthesis in cells infected by human cyto-megalovirus: early and late virus-induced polypeptides. J. Virol. 26:686-701.
Takamizawa, A., C. Mori, I. Fuke, S. Manabe, S. Murakami, J. Fujita, E. Onishi, T. Andoh, I. Yoshida, and H. Okayama. 1991. Structure and organization of the hepatitis C virus genome isolated from human carrier. J. Virol. 65:1105-1113.
Takeuchi, K., Y. Kubo, S. Boonmar, Y. Watanabe, T. Katayama, Q.-L. Choo, G. Kuo, M. Houghton, I. Saito, and T. Miyamura. 1990. Nucleotide sequence of core and envelope genes of the hepatitis C virus genome derived directly from human car-riers. Nucleic Acid Res. 18:4626.
Taylor-Wiedeman, J., J. G. Sissons, L. K. Borysiewicz, and J. H. Sinclair. 1991. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol. 72:2059-2064.
Tenny, D. J., and A. M. Colberg-Poley. 1991. Expression of the human cytomegalo-virus UL26-38 immediate early region during permissive infection. Virology 182: 199-210.
Tenny, D. J., and A. M. Colberg-Poley. 1991. Human cytomegalovirus UL36-38 and US3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J. Virol. 65:6724-6734.
Tenny, D. J., L. Santomenna, K. Goudie, and A. M. Colberg-Poley. 1993. The hu-man cytomegalovirus US3 immediate-early protein lacking the putative trans-membrane domain regulates gene expression. Nucleic Acid Res. 21:2931-2937.
Thomsen, D. R., R. M. Stenberg. W. F. Goins, and M. F. Stinski. 1984. Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc. Natl. Acad. Sci. USA 81:659-663.
Wathen, M. W., and M. F. Stinski. 1982. Temporal patterns of human cytomegalo-virus transcription: mapping the viral RNAs synthesized at immediate-early, early, and late times after infection. J. Virol. 41:462-477.
Weston, K. 1988. An enhancer element in the short unique region of human cyto-megalovirus regulates the production of a group of abundant immediate early tran-scripts. Virology 162:406-416.
Wilkinson, G., A. Akrigg, and P. Greenaway. 1984. Transcription of the immediate early genes of human cytomegalovirus AD169. J. Virol. 41:462-477.
Wu, T.-C., R. H. Hruban, R. F. Ambinder, M. Pizzorno, D. E. Cameron, W. A. Baumgartner, B. A. Reitz, G. S. Hayward, and G. M. Hutchins. 1992. Demonstra-tion of cytomegalovirus nucleic acids in the coronary arteries of transplanted hearts. Am. J. Path. 140:739-746.
Zhang, X. Y., N. M. Inamdar, P. C. Supakar, K. Wu, K. C. Ehrlich, and M. Her-lich. 1991. Three MDBP sites in the immediate-early enhancer-promoter region of human cytomegalovirus. Virology 182:865-869.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top