跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:浦筱峰
研究生(外文):Hsiao-Fung Pu
論文名稱:乙醯膽鹼對大鼠腦下腺前葉細胞泌乳素分泌之調控
論文名稱(外文):The Role of Acetylcholine in PRL Secretion by Cultured Rat Anterior Pituitary Cells
指導教授:劉孟粹珠
指導教授(外文):Tsuei-Chu Liu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:166
中文關鍵詞:泌乳素腦下腺前葉乙醯膽鹼一氧化氮老化鈣離子孔道
外文關鍵詞:prolactinanterior pituitaryacetylcholinenitric oxideagingcalcium channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
乙醯膽鹼 (acetylcholine; ACh) 能在腦下腺細胞合成及釋放,可經由旁分泌或自體分泌方式調節腦下腺功能,然而乙醯膽鹼對腦下腺泌乳素 (prolactin; PRL) 釋放之調節機轉至今仍不十分明瞭,因此本研究乃採用去卵巢大鼠腦下腺前葉 (anterior pituitary; AP) 細胞來探討:1) 週邊激素如動情素 (17b-estradiol; E2) 或三碘甲狀腺素 (triiodothyronine; T3) 組合,調節乙醯膽鹼對泌乳素釋放、細胞內泌乳素含量及細胞內泌乳素mRNA表現之影響;2) 膽鹼性受體之agonists 及antagonists對乙醯膽鹼調節泌乳素基礎及經甲釋素 (thyrotropin-releasing hormone; TRH) 誘發泌乳素釋放之影響;3) 乙醯膽鹼調節泌乳素釋放之機轉;以及 4) 老化對乙醯膽鹼、抑制泌乳素釋放因子多巴胺 (dopamine, DA) 及促進泌乳素釋放因子 (血清張力素, angiotensin II, AII; 腸多胜, vasoactive intestinal peptide,VIP) 調節泌乳素釋放之影響。取2至3月齡Sprague-Dawley (SD) 種系雌鼠,於去二側卵巢四天後斷頭犧牲,取出腦下腺前葉,酵解成單一細胞後,進行初代培養。細胞經diluent、0.6 nM E2、10 nM T3或E2+T3前處理五天後,與不同劑量之乙醯膽鹼 (0 - 10-3 M)、膽鹼性受體之agonists (oxotremorine或carbachol, 0 - 10-3 M)、非特異性膽鹼性受體之antagonist (atropine, 10-3 M)、及特異性m1、m2、m3及m4膽鹼性受體之antagonists (依序為pirenzepine、methoctramine、4-DAMP及tropicamide, 10, 100, 1000 nM) 或其它測試藥劑,於含或不含甲釋素 (100 nM) 下共同作用20分鐘。細胞培養液及細胞萃取液中泌乳素濃度以放射免疫測定法檢測,細胞內泌乳素mRNA表現以Northern blot方法檢測,細胞內DNA含量以光譜儀分析。
結果顯示,乙醯膽鹼對基礎及甲釋素誘發泌乳素釋放之抑制效應在腦下腺前葉細胞經diluent前處理組無法顯現,在細胞經E2、T3或E2+T3前處理組則有顯著抑制效應,而此抑制效應在細胞經E2+T3前處理組為最大。細胞內DNA含量在四組間無差異,但細胞內泌乳素含量及泌乳素mRNA表現則會因細胞經E2、T3及E2+T3前處理而增強,但E2與T3並無同步加成效應。經E2+T3前處理之細胞,oxotremorine及carbachol,與乙醯膽鹼相似,均可顯著抑制基礎及甲釋素誘發泌乳素之釋放,而atropine則可將此抑制效應完全消除。Pirenzepine、methoctramine及4-DAMP亦可完全消除乙醯膽鹼抑制泌乳素之基礎釋放,然對甲釋素誘發泌乳素釋放抑制作用,則有部份 (pirenzepine及methoctramine) 和完全 (4-DAMP) 消除的差別,然tropicamide則對二者均無作用。綜合以上結果得知,乙醯膽鹼確可透過m1、m2及m3膽鹼性受體達到抑制基礎及經甲釋素誘發泌乳素之釋放,而此抑制效應會因腦下腺前葉細胞經E2+T3前處理而更加顯著。
乙醯膽鹼可透過pertussis toxin (PTX; 100 ng/ml)-sensitive G-protein抑制因提升細胞內cAMP (1 mM 8-bromo-cAMP, 10 mM forskolin, 2 mM isobutyl-1-methylxanthine) 或鈣離子濃度 (200 mM veratridine, 1 mM Bay K-8644) 而導致基礎及甲釋素誘發泌乳素之釋放。乙醯膽鹼同時也可抑制因透過phospholipase C (1 U/ml, PLC) 或arachidonic acid (10 mM AA, 0.1 U/ml phospholipase A2) 而導致泌乳素之釋放。乙醯膽鹼對基礎泌乳素釋放之抑制效應不受細胞內鈣離子移動阻斷劑 (100 mM TMB-8, 1 mM thapsigargin) 之存在而有所改變,但卻受到鈣離子內流阻斷劑 (10 mM nifedipine; L-type鈣離子孔道阻斷劑) 及一氧化氮合成酵素抑制劑 (300 mM L-NAME) 之加入而消失。對甲釋素誘發泌乳素釋放而言,乙醯膽鹼之抑制效應會因thapsigargin及L-NAME之加入而減緩,然卻會因nifedipine之存在而消失。綜合以上結果得知,乙醯膽鹼抑制基礎及甲釋素誘發泌乳素之釋放機轉可透過L-type 鈣離子孔道、PTX-sensitive cAMP/Ca2+及PLC和PLA2路徑達成。此外在乙醯膽鹼對基礎及甲釋素誘發泌乳素釋放抑制效應而言,一氧化氮則在乙醯膽鹼抑制泌乳素基礎釋放上扮演了較重要的角色。而細胞內鈣離子移動,則在乙醯膽鹼抑制甲釋素誘發泌乳素之釋放較為重要。由此可見,乙醯膽鹼對基礎及甲釋素誘發泌乳素釋放之抑制機轉並不完全相同。
根據文獻得知,大鼠老化後,血中泌乳素濃度較年輕大鼠明顯增加,而這種泌乳素濃度增加現象是否可能因乙醯膽鹼及其他抑制泌乳素釋放或促進泌乳素釋放因子之效應隨年老而有所改變則不得而知,值得進一步探討。故我們取23 - 24月齡SD種系去卵巢雌性大鼠腦下腺前葉細胞為實驗材料,結果發現泌乳素之基礎釋放會因老化而增加。乙醯膽鹼對基礎及甲釋素誘發泌乳素釋放之抑制效應因年老而減弱。甲釋素及PMA (phorbol 12-myristate 13-acetate) 對泌乳素釋放刺激效應因年老而增強。多巴胺對年老腦下腺前葉細胞泌乳素釋放之抑制效應及血清張力素和腸多胜對泌乳素釋放之刺激效應則會因E2之存在而有異。
綜合以上研究結果顯示,膽鹼性藥物直接對腦下腺前葉細胞基礎及甲釋素誘發泌乳素釋放之抑制效應是透過PTX-sensitive cAMP/Ca2+、PLC、PLA2及L-type鈣離子孔道達成,NO與細胞內鈣離子移動亦參與其中,而此抑制效應會因週邊激素 (E2及T3) 之存在而加強。乙醯膽鹼抑制基礎及甲釋素誘發泌乳素釋放之機轉並不完全相同。乙醯膽鹼對年老大鼠腦下腺前葉細胞抑制泌乳素釋放能力降低,及甲釋素和PMA對年老大鼠腦下腺前葉細胞促進泌乳素釋放能力升高可能是年老大鼠泌乳素釋放增加的原因之一。
Abstract
Acetylcholine (ACh), synthesized in the pituitary, may act as a paracrine/autocrine regulator of pituitary function. However, how ACh affects pituitary prolactin (PRL) secretion has not been clearly demonstrated. We used rat anterior pituitary (AP) cells to investigate: 1) the effects of 17b-estradiol (E2), triiodothyronine (T3), and E2 plus T3 on cholinergic mediation of PRL secretion as well as on cellular PRL contents and PRL mRNA levels; 2) the effects of muscarinic receptor agonists and antagonists on basal and thyrotropin-releasing hormone (TRH)-induced PRL secretion; 3) the intracellular mechanism by which ACh regulates PRL secretion; and 4) if aging changes the PRL response to ACh, as compared to other PRL-inhibitory factors such as dopamine (DA), and PRL-stimulatory factors such as angiotensin II (AII) and vasoactive intestinal peptide (VIP). Cultured AP cells were prepared from young (2 - 3 month- old) ovariectomized rats and pretreated with diluent, 0.6 nM E2, 10 nM T3, or E2 plus T3 for 5 days. Then, cells were challenged with various doses (0-10-3 M) of ACh, muscarinic receptor agonists (oxotremorine or carbachol; 0-10-3 M), non-selected muscarinic receptor antagonist (atropine; 10-3 M), selected muscarinic receptor antagonists (m1, pirenzepine; m2, methoctramine; m3, 4-DAMP; m4, tropicamide; 10, 100, 1000 nM) or various testing drugs in the presence or absence of TRH (100 nM) for 20 min. PRL in the media and cell lysates was monitored by radioimmunoassay. Cytosolic PRL mRNA level was measured by Northern blot analysis. Cellular DNA was assayed by fluometry.
Significant ACh suppression of both basal and TRH-induced PRL secretion was not evident in diluent-pretreated cells, but observed in cells pretreated with E2, T3, or E2 plus T3. Net decreases in PRL secretion were consistently greater in E2 plus T3-pretreated cells than in E2- or T3-pretreated cells. Cellular DNA contents were not affected by any treatment. Cellular PRL and PRL mRNA levels were increased following treatments with E2, T3, or E2 plus T3; however, no synergistic effects were observed between E2 and T3. In E2 plus T3-pretreated cells, oxotremorine and carbachol, like ACh, suppressed both basal and TRH-induced PRL responses in a dose-related manner. Atropine completely prevented the inhibitory action of ACh, oxotremorine or carbachol on PRL secretion in these cells. Pirenzepine, methoctramine and 4-DAMP completely prevented the inhibitory action of ACh on basal PRL secretion, and partially (pirezepine and methoctramine) or completely (4-DAMP) reversed the inhibitory action of ACh on TRH-induced PRL secretion. However, tropicamide had no effect on ACh inhibition of either basal or TRH-induced PRL secretion. In summary, ACh inhibited either basal or TRH-induced PRL secretion via m1, m2 and m3 muscarinic receptors, and its action was facilitated in E2- and T3- pretreated cells. The increases in cellular PRL contents and PRL mRNA levels by E2 or T3 appear to be unrelated to their synergistic action on cholinergic mediation of PRL secretion.
ACh inhibited PRL secretion elicited by drugs elevating either intracellular cAMP (1 mM 8-Br-cAMP, 10 mM forskolin, 2 mM 3-isobutyl-1-methylxanthine) or Ca2+ (200 mM veratridine, 1 mM Bay K-8644) in a pertussis toxin (PTX; 100 ng/ml)-sensitive manner, with or without TRH. ACh also inhibited PRL secretion elicited by phospholipase C (1 U/ml, PLC) or arachidonic acid (10 mM, AA; 0.1 U/ml, phospholipase A2). ACh inhibition of basal PRL secretion was unaltered by intracellular Ca2+ mobilization blockers, TMB-8 (100 mM) and thapsigargin (1 mM), but abrogated by either the Ca2+ influx inhibitor (10 mM nifedipine; the L-type Ca2+ channel blocker) or the nitric oxide synthase inhibitor (300 mM L-NAME). ACh inhibition of TRH-induced PRL secretion was abolished by nifedipine, but accentuated by TMB-8 and alleviated by thapsigargin or L-NAME. In summary, ACh-suppression of PRL secretion, either basal or TRH-stimulated, involved the L-type Ca2+ channels, PLC/PLA2 pathways as well as PTX-sensitive cAMP/Ca2+ pathways. Furthermore, nitric oxide mediated the basal rather than TRH-induced PRL response to ACh, whereas the intracellular Ca2+ mobilization concerned the TRH-induced rather than the basal PRL response to ACh. Thus, ACh appears to inhibit basal vs. TRH-induced PRL secretion via different mechanisms.
Plasma PRL levels have been found to be higher in old than in young rats. Whether changes with age in responsiveness to ACh as well as to other PRL stimulating or inhibiting factors may contribute to the age-related increase in PRL secretion is unknown and merits further investigation. We found that AP cells from aged rats (23-24 month old) secreted more PRL than those from young rats under basal conditions. The inhibitory ability of ACh on both basal and TRH-induced PRL secretion was greater in young than in old cells. The stimulation by TRH or PMA (phorbol 12-myristate 13-acetate) on basal PRL secretion was greater in old than in young AP cells. The effect of age on DA suppression and on AII or VIP stimulation of PRL secretion depended on the availability of E2.
In conclusion, the direct inhibitory action of cholinergic agents on either basal or TRH-induced PRL secretion involves activation of the muscarinic ACh receptors via the PTX-sensitive cAMP/Ca2+ pathways, the PLC/PLA2 pathways, and the L-type Ca2+ channels, and is augmented by E2 and T3. ACh suppression of basal vs. TRH-induced PRL secretion appears to concern differential regulation of nitric oxide and intracellular Ca2+ mobilization. The reduced efficacy of ACh in suppressing and the increased potency of TRH and PMA in stimulating PRL secretion in aged rats may contribute, in part, to the elevated PRL secretion observed during aging.
封面
目錄
中英文對照表
藥物一覽表
藥物一覽表
中文摘要
英文摘要
第一章 緒論
一、腦下腺
二、泌乳素
1.泌乳素之結構
2.泌乳素之功能
3.泌乳素之分泌與調控
三、乙醯膽鹼
四、一氧化氮
五、G-proteins
六、論文研究目的
第二章 實驗材料與方法
一、實驗動物
1.實驗動物之來源、飼養及手術
2.動情週期之確定
二、大鼠腦下腺前葉細胞之初代培養
1.胎牛血清及小牛血清以葡萄糖聚糖活性碳前處理
2.腦下腺前葉之獲取
3.單一腦下腺前葉細胞之製備
4.細胞計數
5.腦下腺前葉細胞之培養
6.藥物處理
三、DNA之測定
1.細胞萃取液的製備
2.DNA之測定
四、泌乳素之放附免疫測定
五、泌乳素mRNA之分析
1.Cytoplasmic RNA的製備
2.RNA之定量
3.電泳及轉漬
4.32P-DNA探針之製備
5.前雜交及雜交反應
6.Bumping Blots
六、實驗數據統計分析
第三章 動情素及三碘申狀腺素對乙醯脆鹼調節泌乳素釋放之效應
一、緒言
二、實驗結果
三、討論
第四章 乙醯跪鹼抑制泌乳赤釋放之轉機轉
一、緒言
二、實驗結果
三、討論
第五章 老化對泌乳素釋放之影響
一、緒言
二、實驗結果
三、討論
第陸章
參考文獻
附錄一
附錄二
附錄三
附錄四
附錄五
期刊論文接受函
本論文已被期刊接受之稿件
參考文獻
Abi-Gerges N, Hove-Madsen L, Fischmeister R, Mery PF 1997 A comparative study of the effects of three guanylyl cyclase inhibitors on the L-type Ca2+ and muscarinic K+ currents in frog cardiac myocytes. Brit J Pharmacol 121:1369-1377
Agu GO, Rajkumar K, Murphy BD 1986 Evidence for dopaminergic regulation of prolactin and a luteotropic complex in the ferret. Biol Reprod 35:508-515
Aguilar E, Tena-Sempere M, Aguilar R, Gonzalez D, Pinilla L 1997 Interactions between N-methyl-D-aspartate, nitric oxide and serotonin in the control of prolactin secretion in prepubertal male rats. Eur J Endocrinol 137:99-106
Ali S, Pellegrini I, Kelly PA 1991 A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor. J Biol Chem 266:20110-20117
Aragay AM, Katz A, Simon MI 1992 The Gaq and Ga11 proteins couple the thyrotropin-releasing hormone receptor to phospholipase C in GH3 rat pituitary cells. J Biol Chem 267:24983-24988
Arnetz BB, Lahnborg G, Eneroth P 1986 Age-related differences in the pituitary prolactin response to thyrotropin-releasing hormone. Life Sci 39:135-139
Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Kelly RA 1998 Reversible S-nitrosation of creatin kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30:979-988
Ashkenazi A, Winslow JW, Peralta EG, Peterson GL, Schimerlik MI, Capon DJ, Ramachandran J 1987 An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238:672-675
Ashworth R, Hinkle PM 1996 Thyrotropin-releasing hormone-induced intracellular calcium responses in individual rat lactotrophs and thyrotrophs. Endocrinology 137:5205-5212
Audinot V, Rasolonjanahary R, Bertrand P, Priam M, Kordon C, Enjalbert A 1991 Involvement of protein kinase-C in the effect of angiotensin-II on adenosine 3'',5''-monophosphate production on lactotroph cells. Endocrinology 129:2231-2239
Avissar S, Egozi Y, Sokolovsky M 1981 Aging process decreases the density of muscarinic receptors in rat adenohypophysis. FEBS Letters 133:275-278
Bach MA, Bondy CA 1992 Anatomy of the pituitary insulin-like growth factor system. Endocrinology 131:2588-2594
Baker BL, Midgley AR Jr, Gersten BE, Yu YY 1969 Differentiation of growth hormone- and prolactin-containing acidophils with peroxidase-labeled antibody. Anat Rec 164:163-171
Batra S 1990 Influence of chronic oestrogen treatment on the density of muscarinic cholinergic receptors and calcium channels in the rabbit uterus. J Endocrinol 125:185-189
Becker K, Savvides SN, Keese M, Schirmer RH, Karplus PA 1998 Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers. Nat Struct Biol 5:267-271
Ben-Baruch G, Egozi Y, Kloog Y, Mashiach S, Sokolovsky M 1981 Altered ontogenesis of muscarinic cholinergic receptor in mouse brain: effect of L-thyroxine and betamethasone. Endocrinology 109:235-239
Berridge MJ 1987 Inositol triphosphate and diacylglycerol. Two interacting messengers. Ann Rev Biochem 56:159-193
Bethea CL 1990 Effect of vasoactive intestinal peptide on monkey prolactin secretion and cyclic AMP in culture: interaction with estradiol and phenol red. Neuroendocrinology 51:576-585
Blachier F, Briand D, Selamnia M, Robert V, Guihot G, Mayeur C 1998 Differential inhibotory effects of three nitric oxide donors on ornithine decarboxylase activity in human colon carcinoma cells. Biochem Pharmacol 55:1235-1239
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA 1998 Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225-268
Borgundvaag B, George SR 1988 Estrogen regulation of rat anterior pituitary adenylate cyclase. Mol Cell Endocrinol 59:35-45
Borrelli E, Heyman RA, Arias C, Sawchenko PE, Evans RM 1989 Transgenic mice with inducible dwarfism. Nature 339:538-541
Brann DW, Putnam CD, Mahesh VB 1989 Antagonism of estrogen-induced prolactin release by dihydrotestosterone. Biol Reprod 40:1201-1207
Brann DW, Rao IM, Mahesh VB 1988 Antagonism of estrogen-induced prolactin release by progesterone. Biol Reprod 39:1067-1073
Bredt DS, Snyder SH 1992 Nitric oxide, a novel neuronal messenger. Neuron 8:3-11
Brown BL, Wojcikiewicz RJH, Dobson PRM, Robinson A, Irons LI 1984 Pertussis toxin blocks the inhibitory effect of muscarinic cholinergic agonists on cyclic AMP accumulation and prolactin secretion in GH3 anterior-pituitary tumour cells. Biochem J 223:145-149
Brunetti L, Ragazzoni E, Preziosi P, Vacca M 1995 A possible role for nitric oxide but not for prostaglandin E2 in basal and interleukin-1-b-induced PRL release in vitro. Life Sci 56:277-283
Bruhn TO, Rondeel JMM, Jackson IMD 1998 Thyrotropin-releasing hormone gene expression in the anterior pituitary. IV. Evidence for paracrine and autocrine regulation. Endocrinology 139:3416-3422
Burns G, Sarkar DK 1993 Transforming growth factor-b1-like immunoreactivity in the pituitary gland of the rat: effect of estrogen. Endocrinology 133:1444-1449
Butcher RL, Fugo NW, Collins WE 1972 Semicircadian rhythm in plasma levels of prolactin during early gestation in the rat. Endocrinology 90:1125-1127
Cai A, Bowers RC, Moore JP Jr, Hyde JF 1998 Function of galanin in the anterior pituitary of estrogen-treated fischer 344 rats:autocrine and paracrine regulation of prolactin secretion. Endocrinology 139:2452-2458
Campbell MD, Jaques JrS, Gala RR 1978 The lack of an effect of cholinergic agonists on anterior pituitary prolactin production in vitro. Experientia 34:1522-1523
Canonico PL, Judd AM, Koike K, Valdenegro CA, MacLeod RM 1985 Arachidonate stimulates prolactin release in vitro: a role for the fatty acid and its metabolities as intracellular regulator(s) in mammotrophs. Endocrinology 116:218-225
Canocino PL, MacLeod RM 1986 Angiotensin peptides stimulate phosphoinositide breakdown and prolactin release in anterior pituitary cells in culture. Endocrinology 118:233-238
Carmeliet P, Denef C 1988 Immunocytochemical and pharmacological evidence for an intrinsic cholinomimetic system modulating prolactin and growth hormone release in rat pituitary. Endocrinology 123:1128-1139
Carmeliet P, Denef C 1989 Synthesis and release of acetylcholine by normal and tumoral pituitary corticotrophs. Endocrinology 124:2218-2227
Carmeliet P, Maertens P, Denef C 1989 Stimulation and inhibition of prolactin release from rat pituitary lactotrophs by the cholinomimetic carbachol in vitro. Influence of hormonal environment and intercellular contacts. Mol Cell Endocrinol 63:121-131
Carrillo AJ, Doherty PC, Guan X, Sturtevant JR, Walro DG 1991 Preferential increase in pituitary prolactin versus vasoactive intestinal peptide as a function of estradiol benzoate dose in the ovariectomized rat. Endocrinology 128:131-138
Cassel D, Selinger Z 1976 Catecholamine stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta 452:538-551
Cataldo NA, Cooper DS, Chin WW, Maloof F, Ridgway EC 1982 The effect of thyroid hormones on prolactin secretion by cultured bovine pituitary cells. Metabolism 31:589-594
Caulfield MP, Birdsall NJM 1998 International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279-290
Ceccatelli S, Hulting AL, Zhang X, Gustafsson L, Villar M, Hokfelt T 1993 Nitric oxide synthase in the rat anterior pituitary gland and the role of nitric oxide in regulation of luteinizing hormone secretion. Proc Natl Acad Sci USA 90:11292-11296
Chen CL, Meites J 1969 Effects of thyroxine and thiouracil on hypothalamic PIF and pituitary prolactin levels. Proc Soc Exp Biol Med 131:576-578
Cheng K, Chan WWS, Arias R, Barreto A, Butler B 1992 PMA-sensitive protein kinase C is not necessary in TRH-stimulated prolactin release from female rat primary pituitary cells. Life Sci 51:1957-1967
Chik CL, Liu QY, Li B, Karpinski E, Ho AK 1995 cGMP inhibits L-type Ca2+ channel currents through protein phosphorylation in rat pinealocytes. J Neurosci 15:3104-3109
Chiodera P, Volpi R, Coiro V 1998 Involvement of nitric oxide in vasoactive intestinal peptide-stimulated prolactin secretion in normal men. Metabolism 47:897-899
Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ 1979 Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294-5299
Chlichlia K, Peter ME, Rocha M, Scaffidi C, Bucur M, Krammer PH, Schirrmacher V, Umansky V 1998 Caspase activation is required for nitric oxide-mediated, CD95(APO-1/Fas)-dependent and independent apoptosis in human neoplastic lymphoid cells. Blood 91:4311-4320
Cho BN, Suh YH, Yoon YD, Lee CC, Kim K 1993 Progesterone inhibits the estrogen-induced prolactin gene expression in the rat pituitary. Mol Cell Endocrinol 93:47-52
Chuknyiska RS, Blackman MR, Hymer WC, Roth GS 1986 Age-related alterations in the number and function of pituitary lactotropic cells from intact and ovariectomized rats. Endocrinology 118:1856-1862
Colin IM, Jameson JL 1998 Estradiol sensitization of rat pituitary cells to gonadotropin-releasing hormone: involvement of protein kinase C- and calcium-dependent signaling pathways. Endocrinology 139:3796-3802
Conn PM, Melmed S (ed) 1997 Endocrinology: Basic and Clinical Principles Humana Press, Yotowa, New Jersey, pp 218-219
Cross RJ, Campbell JL, Roszman TL 1989 Potentiation of antibody responsiveness after the transplantation of a syngeneic pituitary gland. J Neuroimmunol 25:29-35
Dannies PS 1980 Prolactin. Trends Pharmacol Sci 1:206-208
Day RN, Koike S, Sakai M, Muramatsu M, Maurer RA 1990 Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol Endocrinol 4:1964-1971
De Paul AL, Pons P, Aoki A, Torres AI 1997 Heterogeneity of pituitary lactotrophs: immunocytochemical identification of functional subtypes. Acta Histochem 99:227-289
Degtiar VE, Harhammer R, Nhrnberg B 1997 Receptors couple to L-type calcium channels via distinct Go proteins in rat neuroendocrine cell lines. J Physiol (London) 502.2:321-333
Delidow BC, Billis WM, Agarwal P, White BA 1991 Inhibition of prolactin gene transcription by transforming growth factor-b in GH3 cells. Mol Endocrinol 5:1716-1722
Demarest KT, Moore KE, Riegle GD 1985 Adenohypophysial dopamine content and prolactin secretion in the aged male and female rat. Endocrinology 116:1316-1323
Denef C, Base M, Schramme C 1984 Stimulation of prolactin secretion after short term or pulsatile exposure to dopamine in superfused anterior pituitary cell aggregates. Endocrinology 114:1371-1378
Dettbran C, Palade P 1998 Effects of three sarcoplasmic/endoplasmic reticulum Ca++ pump inhibitors on release channels of intracellular stores. J Pharm Exp Therap 285:739-745
Diaz-Torga G, Iglesias AG, Achaval-Zaia R, Libertun C, Becu-Villalobos D 1998 Angiotensin II-induced Ca2+ mobilization and prolactin release in normal and hyperplastic pituitary cells. Am J Physiol 274:E534-540
Dipippo VA, Lindsay R, Powers CA 1995 Estradiol and tamoxifen interactions with thyroid hormone in the ovariectomized-thyroidectomized rat. Endocrinology 136:1020-1033
Driman DK, Kobrin MS, Kudlow JE, Asa SL 1992 Transforming growth factor-a in normal and neoplastic human endocrine tissues. Hum Pathol 23:1360-1365
Duckworth ML, Peden LM, Schroedter I, Shan P, Friesen HF 1988 Placental lactogens and the extra hypophyseal prolactin gene family. In: Hochino K (ed) Prolactin Gene Family and Its Receptors. Elsevier Science, Amsterdam, pp 79-88
Duhe RJ, Evans GA, Erwin RA, Kirken RA, Cox GW, Farrar WL 1998 Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Natl Acad Sci USA 95:126-131
Duvilanski BH, Zambruno C, Seilicovich A, Pisera D, Lasaga M, Diaz MDC, Belova N, Rettori V, McCann SM 1995 Role of nitric oxide in control of prolactin release by the adenohypophysis. Proc Natl Acad Sci USA 92:170-174
Drouva SV, Gorenne I, Laplante E, Rerat E, Enjalbert A, Kordon C 1990 Estradiol modulates protein kinase C activity in the rat pituitary in vivo and in vitro. Endocrinology 126:536-544
Duvilanski BH, Zambruno C, Lasaga M, Pisera D, Seilicovich A 1996 Role of nitric oxide/cyclic GMP pathway in the inhibitory effect of GABA and dopamine on prolactin release. J Neuroendocrinol 8:909-913
Egozi Y, Kloog Y, Fleminger G, Sokolovsky M 1988 Acetylcholine in the rat pituitary: a possible humoral factor. Brain Res 475:376-379
Elliott HL, Meredith PA 1997 Clinical pharmacokinetics of nifedipine. Implications for the care of the elderly. Drug Aging 11:470-479
Elsholtz HP, Lew AM, Albert PR, Sundmark VC 1991 Inhibitory control of prolactin and Pit-1 gene promoters by dopamine. J Biol Chem 266:22919-22925
Enjalbert A, Sladeczek F, Guillon G, Bertrand P, Shu C, Epelbaum J, Garcia-Sainz A, Jard S, Lombard C, Kordon C, Bockaert J 1986 Angiotensin II and dopamine modulate both cAMP and inositol phosphate productions in anterior pituitary cells. J Biol Chem 261:4071-4075
Evans RM 1988 The steroid and thyroid hormone receptor superfamily. Science 240:889-895
Feinberg AP, Vogelstein B 1983 A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:3-6
Felder CC 1995 Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619-625
Fields TA, Casey PJ 1997 Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem J 321:561-571
Forsyth IA 1988 The roles of placental lactogen and prolactin in mammogenesis: An overview of in vivo and in vitro studies. In: Hoshino K (ed) Prolactin Gene Family and Its Receptors., Elsevier Science, Amsterdam, pp137-145
Fox SR, Jong MT, Casanova J, Ye ZS, Stanley F, Samuels HH 1990 The homeodomain protein, Pit-1/GHF-1, is capable of binding to and activating cell-specific elements of both the growth hormone and prolactin gene promotors. Mol Endocrinol 4:1069-1080
Franklyn JA, Lynam T, Docherty K, Ramsden DB, Sheppard MC 1986 Effect of hypothyroidism on pituitary cytoplasmic concentrations of messenger RNA encoding thyrotrophin b and a subunits, prolactin and growth hormone. J Endocrinol 108:43-47
Frantz AG 1978 Prolactin. N Engl J Med 298:201-207
Frawley LS, Boockfor FR 1991 Mammosomatotropes: presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 12:337-355
Freeman ME 1979 A direct effect of the uterus on the surges of prolactin induced by cervical stimulation in the rat. Endocrinology 105:387-390
Fujimoto N, Watanabe H, Ito A 1997 Up-regulation of the estrogen receptor by triiodothyronine in rat pituitary cell lines. J Steroid Biochem Mol Biol 61:79-85
Furth J, Clifton KH 1966 Experimental pituitary tumours. In: Harris GW, Donovan BT (eds), The Pituitary Gland. London: Butterworths; 460-497
Gagnerault MC, Touraine P, Savino W, Kelly PA, Dardenne M 1993 Expression of prolactin receptors in murine lymphoid cells in normal and autoimmune situations. J Immunol 150:5673-5681
Galli F, Rovidati S, Ghibelli L, Canestrari F 1998 S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase decreases the enzyme affinity to the erythrocyte membrane. Nitric Oxide 2:17-27
Garnier M, Lamacz M, Galas L, Lenglent S, Tonon MC, Vaudry H 1998 Pharmacological and functional characterization of muscarinic receptors in the frog pars intermedia. Endocrinology 139:3525-3533
Gautam N, Downes GB, Yan K, Kisselev O 1998 The G-protein bg complex. Cell Signal 10:447-455
Gershengorn MC, Marcus-Samuels BE, Geras E 1979 Estrogens increase the number of thyrotropin-releasing hormone receptors on mammotropic cells in culture. Endocrinology 105:171-176
Gilman AG 1987 G proteins: transducers of receptor generated signals. Annu Rev Biochem 56:615-649
Glass CK, Holloway JM, Devary OV, Rosenfeld MG 1988 The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54:313-323
Gosbee JL, Lederis K 1972 In vivo release of antidiuretic hormone by direct application of acetylcholine or carbachol to the rat neurohypophysis. Can J Physiol Pharmacol 50:618-620
Goss RJ 1978 The Physiology of Growth. Academic Press, New York, p 1-13
Gotzsche LBH 1994 L-triiodothyronine acutely increases Ca2+ uptake in the isolated, perfused rat heart. Changes in L-type Ca2+ channels and b-receptors during short- and long-term hyper- and hypothyroidism. Eur J Endocrinol 130:171-179
Gourdji D, Laverriere JN 1994 The rat prolactin gene: a target for tissue-specific and hormone-dependent transcription factors. Mol Cell Endocrinol 100:133-142
Goya RG, Lu JKH, Meites J 1990 Gonadal function in ageing rats and its relation to pituitary and mammary pathology. Mech Ageing Dev 56:77-78
Graupner G, Zhang XK, Tzukerman M, Wills K, Hermann T, Pfahl M 1991 Thyroid hormone receptors repress estrogen receptor activation of a TRE. Mol Endocrinol 5:365-372
Gregg CM 1985 The compartmentalized hypothalamo-neurohypophysial system: evidence for a neurohypophysial action of acetylcholine on vasopressin release. Neuroendocrinology 40:423-429
Gudelsky GA, Nansel DD, Porter JC 1981 Dopaminergic control of prolactin secretion in the aging male rat. Brain Res 204:446-450
Hadley ME 1992 Endocrinology, ed 3. Prentice-Hall International, London, p102
Halmi NS 1982 Occurrence of both growth hormone- and prolactin- immunoreactive material in the cells of human somatotropic pituitary adenomas containing mamatropic elements. Virchows Arch A 398:19-31
Halper J, Parnell PG, Carter BJ, Ren P, Scheithauer BW 1992 Presence of growth factors in human pituitary. Lab Invest 66:639-645
Hamm HE 1998 The many faces of G protein signaling. J Biol Chem 273:669-672
Hammond PJ, Khandan-Nia N, Withers DJ, Jones PM, Ghatei MA, Bloom SR 1997 Regulation of anterior pituitary galanin and vasoactive intestinal peptide by oestrogen and prolactin status. J Endocrinol 152:211-219
Han X, Kobzik L, Severson D, Shimoni Y 1998 Characteristics of nitric oxide-mediated cholinergic modulation of calcium current in rabbit sino-atrial node. J Physiol (London) 509:741-754
Harp JB, Sayeski PP, Scanlon M, Bernstein KE, Marrero MB 1997 Role of intracellular calcium in the angiotensin II-mediated tyrosine phosphorylation and dephosphorylation of PLC-g1. Biochem Biophy Res Commun 232:540-544
Haug E, Gautvik KM 1976 Effects of sex steroids on prolactin secreting rat pituitary cells in culture. Endocrinology 99:1482-1489
Heyward PM, Clarke IJ 1995 A transient effect of estrogen on calcium currents and electrophysiological responses to gonadotropin-releasing hormone in ovine gonadotropes. Neuroendocrinology 62:543-552
Hinkle PM, Nelson EJ, Ashworth R 1996 Characterization of the calcium response to thyrotropin-releasing hormone in lactotrophs and GH cells. Trends Endocrinol Metab 7:370-374
Honbo KS, van Herle AJ, Kellett KA 1978 Serum prolactin levels in untreated primary hypothyroidism. Am J Med 64:782-787
Hooi SC, Koenig JI, Abraczinskas DR, Kaplan LM 1997 Regulation of anterior pituitary galanin gene expression by thyroid hormone. Mol Brain Res 51:15-22
Hulme EC, Birdsall NJM, Buckley NJ 1990 Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633-673
Ikeda M, Nagai M, Suzuki S, Hiwa H, Oka H, Fujino M, Suzuki H 1984 Effect of an intracellular calcium antagonist (TMB-8) on carbamylcholine-induced amylase release from dispersed rat pancreatic acini. Life Sci 34:529-533
Ingraham HA, Chen R, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, Rosenfeld MG 1988 A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55:519-529
Jahnke G, Hicholson G, Greeley GH, Youngblood WW, Prange AJ, Kized JS 1980 Studies of the neural mechanisms by which hypothyroidism decreases prolactin secretion in the rat. Brain Res 191:429-441
Janik JM, Robinson EO, Shen J, Callahan P 1997 Effects of age and gender on the AII-induced stimulation of prolactin release and inositol phosphate accumulation in rat anterior pituitary cells in vitro. Mech Ageing Dev 95:113-130
Johnson BD, Brousal JP, Peterson BZ, Gallombardo PA, Hockerman GH, Lai Y, Scheuer T, Catterall WA 1997 Modulation of the cloned skeletal muscle L-type Ca2+ channel by anchored cAMP-dependent protein kinase. J Neurosci 17:1243-1255
Judd AM 1995 Vasoactive intestinal peptide increases the liberation of arachidonate from anterior pituitary cells in vitro. Life Sci 57:1641-1646
Katsuki S, Arnold WP, Murad F 1977 Effects of sodium nitroprusside, nitroglycerine, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucleotide Res 3:239-247
Keyse SM 1998 Protein phosphates and the regulation of MAP kinase activity. Semin Cell Dev Biol 9:143-152
Kineman RD, Gettys TW, Frawley LS 1996 Role of guanine nucleotide-binding proteins, Gia3 and Gsa, in dopamine and thyrotropin-releasing hormone signal transduction: evident for competition and commonality. J Endocrinol 148:447-455
Kimura N, Hayafuji C, Konagaya H, Takahashi K 1986 17b-estradiol induces somatostatin (SRIF) inhibition of prolactin release and regulates SRIF receptors in rat anterior pituitary cells. Endocrinology 119:1028-1036
Kolesnick RN, Musacchio I, Thaw C, Gershengorn MC 1984 Arachidonic acid mobilizes calcium and stimulates prolactin secretion from GH3 cells. Am J Physiol E458-E462
Kudlow JE, Kobrin MS 1984 Secretion of epidermal growth factor-like mitogens by cultured cells from bovine anterior pituitary glands. Endocrinology 115:911-917
Kumagai M, Yamada K, Matsuo N, Furukawa T 1988 Inhibition via muscarinic M-1 receptor stimulation of TRH-induced prolactin release in estrogen-primed rats. Arch Int Pharmacodyn 293:236-244
Kwa HG, Verhofstad F 1967 Prolactin levels in the plasma of female rats. J Endocrinol 39:455-456
Lam KSL, Srivastava G, Lechan RM, Lee T, Reichlin S 1990 Estrogen regulates the gene expression of vasoactive intestinal peptide in the anterior pituitary. Neuroendocrinology 52:417-421
Lamacz M, Tonon M, Louiset E, Cazin L, Strosberg D, Vaudry H 1989 Acetylcholine stimulates a-melanocyte-stimulating hormone release from frog pituitary melanotrophs through activation of muscarinic and nicotinic receptors. Endocrinology 125:707-714
Lamberts SWJ 1988 The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocr Rev 9:417-436
Lapetina EG 1982 Regulation of arachidonic acid production. Role of phospholipase C and A2. Trend Pharmacol Sci 3:115-118
Larson GH, Wise PM 1991 Age-related alterations in prolactin secretion by individual cells as assessed by the reverse hemolytic plaque assay. Biol Reprod 44:648-655
Lazareno S, Birdsall NJM 1993 Pharmacological characterization of acetylcholine-stimulated [35S]-GTPgS binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Brit J Pharmacol 109:1120-1127
Lederis K, Livingston A 1970 Neuronal and subcellular localization of acetylcholine in the posterior pituitary of the rabbit. J Physiol 210:187-204
Lieberman ME, Maurer RA, Gorski J 1978 Estrogen control of prolactin synthesis in vitro. Proc Natl Acad Sci USA 75:5946-5949
Liu H, Xiong Z, Sperelakis N 1997 Cyclic nucleotides regulate the activity of L-type calcium channels in smooth muscle cells from rat portal vein. J Mol Cell Cardiol 29:1411-1421
Liu TC, Pu HF, Wang PS 1993 Unimpaired postreceptor regulation of luteinizing hormone secretion by gonadotropin-releasing hormone and estrogen in aged rat anterior pituitary cells. Endocrinology 132:1189-1194
Liu YF, Jakobs KH, Rasenick MM, Albert PR 1994 G protein specificity in receptor-effector coupling. Analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J Biol Chem 269:13880-13886
Livingstone JD, Lerant A, Freeman ME 1998 Ovarian steroids modulate responsiveness to dopamine and expression of G-proteins in lactotropes. Neuroendocrinology 68:172-179
Lo MJ, Kau MM, Chen JJ, Yeh JY, Lin H, Wang SW, Wang PS 1999 Age-related differences in corticosterone secretion in female rats. Metabolism 48:535-541
Louiset E, Cazin L, Duval O, Lamacz M, Tonon MC, Vaudry H 1990 Effect of acetylcholine on the electrical and secretory activities of frog pituitary melanotrophs. Brain Res 533:300-308
Lloyd RV, Jin L, Qian X, Zhang S, Scheithauer BW 1995 Nitric oxide synthase in the human pituitary gland. Am J Pathol 146:86-94
Luine VN, Renner KJ, Heady S, Jones KJ 1986 Age and sex-dependent decreases in ChAT in basal forebrain nuclei. Neurobiol Aging 7:193-198
Madesh M, Balasubramanian KA 1997 Nitric oxide inhibits enterocyte mitochondrial phospholipase D. FEBS Lett 413:269-272
Maeda T, Lloyd RV 1993 Protein kinase C activity and messenger RNA modulation by estrogen in normal and neoplastic rat pituitary tissue. Lab Invest 68:472-480
Mangalam HJ, Albert VR, Ingraham HA, Kapiloff M, Wilson L, Nelson C, Elsholtz H, Rosenfeld MG 1989 A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev 3:946-958
Matsuno A, Takekoshi S, Sanno N, Utsunomiya H, Ohsugi Y, Saito N, Kanemitsu H, Tamura A, Nagashima T, Osamura RY, Watanabe K 1997 Modulation of protein kinases and microtubule-associated proteins and changes in ultrastructure in female rat pituitary cells: effect of estrogen and bromocriptine. J Histochem Cytochem 45:805-813
Matton A, Bollengier F, Finne E, Vanhaelst L 1997 Effect of Nw-nitro-L-arginine methyl ester, a nitric oxide synthesis inhibitor, on stress- and morphine-induced prolactin release in male rats. Brit J Pharmacol 120:268-272
Maurer RA 1981 Transcriptional regulation of the prolactin gene by ergocryptine and cyclic AMP. Nature 294:94-97
Maurer RA 1982a Estradiol regulates the transcription of the prolactin gene. J Biol Chem 257:2133-2136
Maurer RA 1982b Thyroid hormone specifically inhibits prolactin synthesis and decreases prolactin messenger ribonucleic acid levels in cultured pituitary cells. Endocrinology 110:1507-1514
Maurer RA 1982c Relationship between estradiol, ergocryptine, and thyroid hormone: effects on prolactin synthesis and prolactin messenger ribonucleic acid levels. Endocrinology 110:1515-1520
Maus M, Bertrand P, Drouva S, Rasolonjanahary R, Kordon C, Glowinski J, Premont J, Enjalbert A 1989 Differential modulation of D1 and d2 dopamine-sensitive adenylate cyclases by 17b-estradiol in cultured striatal neurons and anterior pituitary cells. J Neurochem 52:410-418
Meinkoth J, Wahl G 1984 Hybridization of nucleic acids on immobilized solid supports. Anal Biochem 138:267-284
Meites J 1982 Changes in neuroendocrine control of anterior pituitary function during aging. Neuroendocrinology 34:151-156
Mirell CJ, Yanagisawa M, Lau R, Eugene Pekary A, Chin WW, Hershman JM 1987 Influence of thyroidal status on pituitary content of thyrotropin b- and a-subunit, growth hormone, and prolactin messenger ribonucleic acids. Mol Endocrinol 1:408-412
Montagne MN, Dussaillant M, Chew LJ, Berod A, Lamberts SJ, Carter DA, Rostene W 1995 Estradiol induces vasoactive intestinal peptide and prolactin gene expression in the rat anterior pituitary independently of plasma prolactin levels. J Neuroendocrinol 7:225-231
Montgomery DW, Shen GK, Ulrich ED, Steiner LL, Parrish PR, Zukoski CF 1992 Human thymocytes express a prolactin-like messenger ribonucleic acid and synthesize bioactive prolactin-like proteins. Endocrinology 131:3019-3026
Mukherjee A, Snyder G, McCann SM 1980 Characterization of muscarinic cholinergic receptors on intact rat anterior pituitary cells. Life Sci 27:475-482
Murad F 1986 Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1-5
Murphy LJ, Bell GI, Friesen HG 1987 Tissue distribution of insulin-like growth factor I and II messenger ribonucleic acid in the adult rat. Endocrinology 120:1279-1282
Nakane PK 1970 Classifications of anterior pituitary cell types with immunoenzyme histochemistry. J Histochem Cytochem 18:9-20
Naor Z 1986 Phosphoinositide turnover, Ca2+ mobilization, protein kinase C activation and leukotriene action in pituitary signal transduction: effect of gonadotropin releasing hormone. Adv Prostaglandin Thromboxane leukotriene Res 16:225-234
Nathan C 1992 Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051-3064
Nathan C, Xie QW 1994 Nitric oxide synthase: role, tolls, and controls. Cell 78:915-918
Neill JD 1970 Effect of "stress" on serum prolactin and luteinizing hormone levels during the estrous cycles of the rat. Endocrinology 87:1192-1197
Neill JD, Frawley LS 1983 Detection of hormone release from individual cells in mixed populations using a reverse hemolytic plaque assay. Endocrinology 112:1135-1137
Nicoll CS, Meites J 1963 Prolactin secretion in vitro: effects of thyroid hormones and insulin. Endocrinology 72:544-551
Noel GL, Suh HK, Frantz AG 1974 Prolactin release during nursing and breast stimulation in postpartum and nonpostpartum subjects. J Clin Endocrinol Metab 38:413-423
Nogami H 1984 Fine-structural heterogenity and morphologic changes in rat pituitary prolactin cells after estrogen and testosterone treatment. Cell Tissue Res 237:195-202
Offermanns S, Gollasch M, Hescheler J, Spicher K, Schmidt A, Schultz G, Rosenthal W 1991 Inhibition of voltage-dependent Ca2+ currents and activation of pertussis toxin-sensitive G-proteins via muscarinic receptors in GH3 cells. Mol Endocrinol 5:995-1002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊