跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:雷素珍
研究生(外文):Lei Su-Chen
論文名稱:MPTP對小白鼠腦造成氧化壓力的情形
論文名稱(外文):Oxidative Stress in Mouse Brain Induced by MPTP
指導教授:古宏海
指導教授(外文):Hung-Hai Ku,Ph.D
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:49
中文關鍵詞:1-甲基-4-酚基-1236-四氫嘌呤氧化壓力超氧陰離子超氧物歧化過氧化氫丙二醛小白鼠
外文關鍵詞:MPTPOxidative stressO2·-SODcatalaseMDAICR mouse
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1-甲基-4-酚基-1,2,3,6-四氫嘌呤(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 簡稱MPTP)是一種具有選擇性之神經毒性物質。對黑質-紋狀體多巴胺神經傳導途徑有高度專一性的傷害,能引發與人類巴金森氏症相似的顫抖、肌肉僵直及起始運動困難等症狀。
本實驗的目的主要在探討MPTP導致鼠腦氧化壓力的情形。我們採用兩個月大及六個月大兩種年齡層的雄性ICR小白鼠,單次給予MPTP(30 mg/kg)注射於腹腔,控制組則只注射溶劑,做急性期(24小時以內)的觀察。在不同時間犧牲動物後,取出腦組織分成大腦額葉、次皮質區、紋狀體、中腦及小腦等區用以檢測。利用分光光譜儀(spectrophotometer)測量超氧陰離子(O2·-)之生成速率、測量總超氧物歧化脢(SOD)和過氧化氫脢(catalase)之活性,用高液態色層分析之螢光測定法(high performance liquid chromatography fluorescence detection)測定MDA-TBA 聚合物的量。比較二月齡和六月齡小白鼠的O2·-生成速率則是利用化學螢光法(chemiluminescence)監測。
經本論文實驗結果我們發現:小白鼠經MPTP處理後,在大腦額葉、次皮質區和小腦的粒線體產生O2·-的速率在四小時達最大值。鼠腦的總超氧物歧化脢活性和過氧化氫脢活性增加的時間先後不同。其中紋狀體和中腦總超氧物歧化脢活性增加持續至二十四小時,而過氧化氫脢活性則在第八小時達到最高。MDA含量有隨時間增加而增加的情形,至二十四小時達最大值。6月齡的小白鼠經MPTP處理後,中腦超氧陰離子(O2·-)的生成速率較大且丙二醛(MDA)含量較高,超氧物歧化脢(SOD)和過氧化氫脢(catalase)活性較低。可見經MPTP處理後6月齡鼠腦較2月齡鼠腦所遭受的氧化壓力有較大的趨勢。
總而言之,單次劑量的MPTP注射處理對小白鼠確實造成氧化壓力增加的情形,其中以紋狀體及中腦較為明顯;而MPTP所引起的氧化壓力在6月齡的小白鼠中腦比2月齡的小白鼠中腦更為明顯。

A selective neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is converted into 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPDP+) by astrocytes. After autoxidation, the toxic metabolite 1-methyl-4-phenylpyridinium (MPP+) is formed and cause damage to the dopaminergic neurons. In the mouse, the MPTP-induced etiology similar to Parkinsonian syndromes has been extensively studied.
In this study, we investigated the MPTP-induced oxidative stress in the mouse brain. Two- and six-month old male ICR mice were used. At 1, 2, 4, 8, 10, 12 or 24 hr after single injection (i.p.) of MPTP (30 mg/kg), the mice were sacrificed. Brains were rapidly removed from the skull and selected areas (frontal cortex, subcortex, striatum, midbrain and cerebellum) dissected out and processed for various biochemical estimations. The time-dependent changes of mitochondrial O2.- generation rate, activities of superoxide dismutase (SOD) and catalase in the brain were measured by spectrophotometry. Lipid peroxidation (measured as MDA content) in the brain were also determined by high performance liquid chromatography fluorescence detection. The comparison of mitochondrial O2.- generation rate between 2- and 6-month old mice was made by chemiluminescence.
Results showed that in the frontal cortex, the subcortex and the cerebellum, the mitochondrial O2.- generation peaked at 4 hr after MPTP treatment. In the striatum and the midbrain, the activity of total SOD increased with time. However, the peaked activity of catalase was observed at 8 hr in the frontal cortex and the striatum and 10 hr in the midbrain. The MDA content also increased with time after MPTP injection. As compared with 2-month old, the 6-month mouse brain generated higher level of O2.- 4 hr after MPTP-treatment. They also had higher content of MDA. But the activities of SOD and catalase were lower in the midbrain of 6-month old mice after MPTP-administration.
Taken together, these results showed that a single dose of MPTP-injection increased oxidative stress in the mouse brain, particularly in the striatum and the midbrain. In 6-month old mice, the oxidative stress caused by MPTP was more prominent in the midbrain. On the basis of the present results, the oxidative stress is crucial in neurotoxicity caused by MPTP.

圖表目錄……………………………………………………………………III
中文摘要……………………………………………………………………V
英文摘要……………………………………………………………………VII
壹、緒論………………………………………………………………………1
巴金森氏症……………………………………………………………………1
MPTP…………………………………………………………………………2
MPTP與自由基的產生………………………………………………………3
抗氧化系統……………………………………………………………………4
氧化壓力………………………………………………………………………4
MPTP與氧化壓力……………………………………………………………5
實驗目的………………………………………………………………………5
貳、材料與方法………………………………………………………………7
一、實驗設計…………………………………………………………………7
(一)O2·-組…………………………………………………………………7
(二)SOD及catalase組………………………………………………………7
(三)MDA組………………………………………………………………7
(四)2月齡及6月齡比較組…………………………………………………7
二、動物組織…………………………………………………………………7
三、測量O2·-之生成速率……………………………………………………8
(一)分離粒線體……………………………………………………………8
(二)製備SMP………………………………………………………………8
(三)測量方法………………………………………………………………8
1、利用分光光譜儀(spectrophotometer)測量O2·-之生成速率…………8
2、利用化學螢光法(chemiluminescence)測定O2·-生成速率……………9
四、測量總超氧物歧化脢和過氧化氫脢之活性……………………………10
(一)測量總超氧物歧化脢(total SOD)之活性……………………………10
(二)測量過氧化氫脢的活性………………………………………………11
五、丙二醛(MDA)的測定…………………………………………………11
六、蛋白質含量的測定………………………………………………………12
七、統計方法…………………………………………………………………13
參、結果………………………………………………………………………14
一、O2·-的產生速率……………………………………………………………14
二、總超氧物歧化脢的活性變化……………………………………………14
三、過氧化氫脢的活性變化…………………………………………………15
四、MDA的含量情形…………………………………………………………15
五、2月齡和6月齡小白鼠受MPTP處理後各腦區四種參數的比較…………16
肆、討論………………………………………………………………………17
伍、結論………………………………………………………………………21
陸、參考文獻…………………………………………………………………22
柒、圖表………………………………………………………………………30
圖表目錄
表一 小白鼠經MPTP處理後各腦區在不同時間產生O2·-的速率……………30
表二 小白鼠經MPTP處理後各腦區不同時間總超氧物歧化脢活性變化……31
表三 小白鼠經MPTP處理後各腦區在不同時間過氧化氫脢的活性變化……32
表四 白鼠經MPTP處理後各腦區在不同時間MDA的含量情形………………33
表五 2月齡和6月齡小白鼠受MPTP注射處理後各腦區四種參數的比較……34
圖一 MPTP代謝圖………………………………………………………………35
圖二 MPTP於腦中代謝途徑之簡圖一…………………………………………36
圖三 MPTP於腦中代謝途徑之簡圖二…………………………………………37
圖四 氧自由基的生成與抗氧化系統對抗的作用模式圖………………………38
圖五 利用細胞色素C還原法間接檢測次粒線體物質產生O2·-的速率…………39
圖六 化學螢光法檢測O2·-生成速率的原理……………………………………40
圖七 分光光譜儀測定超氧物歧化脢的原理……………………………………41
圖八 過氧化氫脢活性的測定原理………………………………………………42
圖九 丙二醛(MDA)含量的測定原理…………………………………………43
圖十 在小白鼠的額葉、次皮質和小腦粒線體產生超氧自由基的情形………44
圖十一 MPTP注射四小時後對小白鼠大腦產生超氧自由基的影響……………45
圖十二 小白鼠額葉、紋狀體和中腦的超氧物歧化脢活性隨時間的變化圖……46
圖十三 小白鼠額葉、紋狀體和中腦的過氧化氫脢活性隨時間的變化圖………47
圖十四 MDA脂質過氧化物在注射MPTP後在三腦區增加的情形………………48
圖十五 2和6月齡小白鼠受MPTP注射後O2·-的產生速率、總超氧物歧化的活性、過氧化氫脢活性變化及MDA含量情形…………………………………………………………………………………49

Adams, J.D. and Odunze, I.N. (1991) Biochemical mechanisms of 1-
methyl-4-phynel-1,2,3,6-tetrahydropyridine toxicity: could oxidative
stress be involved in the brain? Bioiochem. Pharmacol., 41: 1099-1105.
Adams, J.D., Klaidman, L.K. and Leung, A.C. (1993) MPP+ and MDP+
induced oxygen radical formation with mitochondrial enzymes. Free
Radic. Biol. Med., 15: 181-186.
Ali, S.F., David, S.N., Newport, G.D., Cadet, J.L. and Slikker, W.Jr.
(1994) MPTP-induced oxidative stress and neurotoxicity are age-
dependent: evidence from measures of reactive oxygen species and
striatal dopamine levels. Synapse, 18: 27-34.
Ames, B.N., Shigenaga, M.K. and Hagen, T.M. (1993) Oxidants,
antioxidants, and the degenerative disease of aging. Proc. Natl, Acad.
Sci. USA, 90: 7915-7922.
Bowling, A.C. and Beal, M.F. (1994) Bioenergetic and oxidative stress in
neurodegenerative diseases. Life Sci., 56(14): 1151-1171.
Boveris, A. (1984) Determination of the production of superoxide radicals
and hydrogen peroxide in mitochondria. Methods Enzymol., 105: 429-
435.
Chiueh, C.C., Johannessen, J.N., Chesselet, M.F., Jacobwitz, K.M. and
Kopin, I.J. (1985) Neurotoxic mechanism of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and its oxidative metabolites in the
nigrostriatal system of C57BL6 mice. Fed. Proc., 44: 893.
Chiueh, C.C., Markey, S.P., Burns, R.S., Jahannessen, J.N., Jacobwitz, K.M.
and Kopin, I.J. (1983) Neuropharmacology and neurotoxicity of
MPTP. Pharmacologist, 25: 131.
Chiueh, C.C., Miyake, H. and Peng, M.T. (1993) Role of dopamine
autoxidation, hydroxyl radical generation and calcium overload in
underlying mechanism involved in MPTP-induced Parkinsonism. Adv.
Neurol., 60: 251-258.
Dahlstrom, A. and Fuxe, K. (1964) Evidence for the existence of
monoamine-containing neurons in the central nervous system. Acta
Physiol. Scand., 62: 1-55.
D'Amato, R.J., Javitch, J.A., Strittmatter, S.M. and Snyder, S.H. (1985)
Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine: Uptake of the metabolite N-methyl-4-
phenylpyridine by dopamine neurons explains selective toxicity. Proc.
Natl. Acad. Sci. USA, 82: 2173-2177.
Dexter, D. T., Carter C. J., Wells F. R., Javoy-Agid, F.,Agid, Y., Lees, A.,
Jenner, P. and Marsden, C. D. (1989) Basal lipid peroxidation in vivo. J.
Neurochem., 52: 381-389.
German, D.C., Dubach, M., Askari, S., Speciale, S.G. and Bowden, D.M.
(1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced
parkinsonian syndrome in Macaca Fascicularis: Which midbrain
dopaminergic neurons are lost? Neuroscience, 24: 161-174.
Gotz, M.E., Kunig, G., Riederer, P. and Youdim, M.B.H. (1994) Oxidative
stress: free radical production in neural degeneration. Pharmac. Ther.,
63: 37-122.
Halliwell, B. (1992) Reactive oxygen species and the central nervous
system. J. Neurochem., 59: 1609-1623.
Halliwell, B. and Gutteridge, J.M. (1984) Oxygen toxicity, oxygen
radicals, transition metals and disease. Biochem. J., 219: 11-14.
Halliwell, B. and Gutteridge, J.M.C.(1985) Oxygen radicals and the
nervous system. TINS, 8: 22-29.
Halliwell, B. and Gutteridge, J.M.C.(1991) "Protection against oxidants in
biological systems: the superoxide theory of oxygen toxicity". In Free
Radicals in Biology and Medicine. 2nd ed., Oxford University Press,
New York, USA. pp. 87-187.
Heikkila, R.E. and Sonsalla, P.K. (1992) The MPTP-treated mouse as a
model of parkinsonism: how good is it? Neurochem. Int., 20: 200S-
303S.
Hess, A., Bretschneider, A., Sullivan, T. and Adamo, P. (1985) 3H-MPTP
binds to neuroglia in the brain. Soc. Neuro. Abstr., 11: 428.
Hirsch, E., Graybiel, A.M. and Agid, Y.A. (1988) Melanized dopaminergic
neurons are differentially susceptible to degeneration in Parkinson's
disease. Nature, 334: 345-348.
Hung, H.C. and Lee, E.H.Y. (1998) MPTP produces differential oxidative
stress and antioxidative responses in the nigrostriatal and mesolimbic
dopaminergic pathways. Free Radiac. Biol. Med., 24: 76-84.
Janssen, Y.M.W., Houten, B.V., Borm, P.J.A. and Mossman, B.T. (1993)
Biology of disease - Cell and tissue responses to oxidative damage. Lab.
Invest., 69: 261-274.
Jenner, P., Rupniak, N.M.J., Rose, S., Kelly, E., Kilpatrick, G., Less, A. and
Marsden, C.D. (1984) 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine-induced Parkinsonism in the common marmoset.
Neurosci. Lett., 50: 85-90.
Johannessen, J.N. (1991) A model of chronic neurotoxicity: long-term
retention of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+)
within catecholaminergic neurons. Neurotoxicology, 12: 285-302.
Johannessen, J.N., Adams, J.D., Schuller, H.M., Bacin, J.P. and Markey, S.P.
(1986) 1-methyl-4-phenylpyridine (MPP+) induces oxidative stress
in the rodent. Life Sci., 38: 743-749.
Klaidman, L.K., Adams, J.D.Jr., Leung, A.C., Kim, S.S. and Cadenas, E.
(1993) Redox cycling of MPP+: evidence for a new mechanism
involving hydride transfer with xanthine oxidase, aldehyde
dehydrogenase, and lipoamide dehydrogenase. Free Radic. Biol. Med.,
15: 169-179.
Langston, J.W., Irwin, I., Langston, E.B. and Forno, L.S. (1984) Pargyline
prevents MPTP-induced Parkinsonism in primates. Science, 225: 1480.
Levitt, P., Ointar, J.E. and Breakefield, X.O. (1982) Immunocytochemical
demonstration of monoamine oxidase B in brain astrocytes and
serotoninergic neurons. Proc. Natl. Acad. Sci. USA, 79: 6385-6389.
Lowry, O.H., Rosebrough, N.J., Farr, A.I. and Randall, R.I. (1951) Protein
measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265-
275. Luck, H. (1965) Catalase.In: Bergmeyer, H. ed. Methods of
Enzymatic Analysis. New York: Academic Press. pp.885-894.
Marini, A.M., Lipsky, R.H., Schwartz, J.P. and Kopin I.J. (1992)
Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinein
cultured cerebellar astrocytes. J. Neurrochem., 58: 1250-1258.
Misra, H.P. and Fridovich, I. (1977) Superoxide dismutase; "positive"
spectrophotometric assays. Anal. Biochem., 70: 553-560.
Mizuno, Y., Sone, N. and Saitoh, T. (1987) Effects of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion
on activities of the enzymes in the electron transport system in mouse
brain. J. Neurochem., 48: 1787-1793.
Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya,
H., Ozawa, T. and Kagawa, Y. (1989) Deficiencies in complex I
subunits of the respiratory chain in Parkinson's disease. Biochem.
Biophys. Res. Commun., 163: 1450-1455.
Moore, R.Y. and Bloom, F.E. (1978) Central catecholamine neuron system:
Anatomy and physiology of the dopamine systems. Annu. Rev.
Neurosci., 1: 129-169.
Muller-Hocker, J. (1992) Mitochondria and aging. Brain Pathol., 2:
149-158.
Nicklas, W.J., Vyas, I. And Heikkila, R.E. (1985) Inhibition of NADH-
linked oxidation in brain mitochondria by 1-methyl-4-phynelpyridine, a
metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine. Life Sci., 36: 2503-2508.
Obata, T. and Chiueh, C.C. (1992) In vitro trapping of hydroxyl free
radicals in the striatum utilizing intracranial microanalysis perfusion of
salicylate: effect of MPTP, MPDP+, and MPP+. J. Neural Transm., 89:
139-145.
O'Carroll, A.M., Tipton, K.F., Sullivan, J.P., Fowler, C.J. and Ross, S.B.
(1987) Intra- and extra-synaptosomal deamination of dopamine and
noradrenaline by the two forms of human brain monoamine oxidase.
Implications for the neurotoxicity of N-methyl-4-phynel-1,2,3,6-
tetrahydropyridine in man. Biogenic Amines, 4: 165-178.
Olanow, C.W. (1993) A radical hypothesis for neurodegeneration. TINS,
16(11): 439-444.
Ozawa, K., Seta, K., Takeda, H., Ando, K., Handa, H. and Araki, C.
(1966) On the isolation of mitochondria with high respiratory control
from rat brain. J. Biochem., 59: 501-510.
Poirier, J. and Barbeau, A. (1985a) 1-Methyl-4-phenyl-pyridinium-induced
inhibition of nicotinamide adenosine dinucleotide cytochrome c
reductase. Neurosci. Lett., 62: 7-11.
Poirier, J. and Barbeau, A. (1985b) A catalyst function for MPTP in
superoxide formation. Biochem. Biophys. Res. Commun., 131: 1284-
1289.
Poirier, J., Donaldson, J. and Barbeau, A. (1985) The specific vulnerability
of the substantia nigra to MPTP is related to the presence of transition
metals. Biochem. Biophys. Res. Commun., 128: 25-33.
Przedborski, S., Kostic, V., Jackson-Lewis, V., Niani, A. B., Simonetti, S.,
Fahn, S., Carlson, E.,Epstein, C. J. and Cadet, J. L. (1992) Transgenic
mice with increased Cu/Zn-superoxide Dismutase activity are resistant
to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.
J. Neurosci., 16: 1658-1667.
Ramsay, R.R., Kowal, A.T., Johson, M.K., Salach, J.I. and Singer, T.P.
(1987) The inhibition site of MPP+, the neurotoxic bioactivation
product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is
near the Q-binding site of NADH dehydrogenase. Arch. Biochem.
Biophys., 259: 645-649.
Rasom, B.R., Kunis, D.M., Irwin, I. And Langston, J.W. (1987) Astrocytes
convert the Parkinsonism inducing neurotoxin, MPTP, to its active
metabolite, MPP+. Neurosci. Lett., 75: 323-328.
Reichmann, H., Lestienne, P., Jellinger, K. and Riederer, P. (1993)
Parkinson's disease and the electron transport chain in post mortem
brain. In Advances in Neurology. Raven Press, New York. Vol. 60, pp.
297-299.
Rossetti, Z. L., Sotgiu, A., Sharp, D. E., Hadjiconstantinou, M. and Neff, N.
H. (1988) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and
free radicals in vitro. Biochem. Pharmacol., 37: 4573-4574.
Schapira, A.H.V. (1994) Review: evidence for mitochondrial dysfunction
in Parkinson's disease-a critical appraisal. Mov. Disord., 9: 125-138.
Schapira, A.H.V., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B. and
Marsden, C. D. (1989) Mitochondrial complex I deficiency in
Parkinson's disease. Lancet i, 1269.
Shull, S., Heintz, N.H., Periasamy, M., Manohar, M., Janssen, Y.M.W.,
Marsh, J.P. and Mossman, B.T. (1991) Differential regulation of
antioxidant enzymes in response to oxidants. J. Biol. Chem., 266:
24398-24403.
Singer, T.P., Ramsay, R. R., Sonsalla, P. K., Nicklas, W. J. and Heikkila, R.
E. (1993) Biochemical mevhanisms underlying MPTP-induced and
idiopathic parkinsonism. New vistas. Adv. Neurol., 60: 300-305.
Singer, T.P., Salach, J.I., Castagnli, N.Jr. and Trevor, A. (1986) Interaction
of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
with the monoamine oxidase. Biochem. J., 235: 785-789.
Sofic, E., Lange, K.W., Jellinger, K. and Riederer, P. (1992) Reduced and
oxidized glutathione I the substantia nigra of patients with Parkinson's
disease. Neurosci. Lett., 142: 128-130.
Sohal, R.S. (1993) Patterns of lipid changes in membranes of the aged
brain. Gerontology, 33: 149-154.
Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J. and Lal, H. (1994)
Oxidative damage, mitochondrial oxidant generation and antioxidant
defenses during aging and in response to food restriction in the mouse.
Mech. Ageing Dev., 74: 121-133.
Sohal, R.S. and Weindruch, R. (1996) Oxidative stress, caloric restriction,
and aging. Science, 273: 59-63.
Sriram, K., Pai, K.S., Boyd, M.R. and Ravindranath, V. (1997) Evidence
for generation of oxidative stress in brain by MPTP:in vitro and in vivo
studies in mice. Brain Res., 749: 44-52.
Sullivan, J.P. and Tipton, K.F. (1988) Interactions of monoamine oxidase
and MPTP in human brain. Neurotoxins in Neurochemistry. Ellis
Horwood, Chichester. pp. 125-131.
Sun, J.S., Hang, Y.S., Huang, I.H. and Lu, F.J. (1996) A simple
chemiluminescence assay for detecting of oxidative stress in ischemic
limb injury. Free Radic. Biol. Med., 20: 107-112.
Thiffault, C., Aumont, N., Quirion, R. and Poirier, J. (1995) Effect of
MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation
levels in mouse brain. J. Neurochem., 65: 2725-2733.
Uhi, G.R., Hedreen, J.D. and Price, D.L. (1985) Parkinson's disease: Loss of
neurons from the ventral tegmental area contralateral to therapeutic
surgical lesions. Neurology, 35: 1215-1218.
Warner, H.R. (1994) Superoxide dismutase, aging, and degenerative
disease. Free Radic. Biol. Med., 17: 249-258.
Westlund, K.N., Denney, R.M., Kochersperger, L.M., Rose, R.M. and Abell
C.W. (1985) Distinct monoamine oxidase A and B populations in
primate brain. Science, 230: 181-183.
Westlund, K.N., Denney, R.M., Rose, R.M. and Abell, C.W. (1988)
Localization of distinct monoamine oxidase A and monoamine oxidase
B cell populations in human brainstem. Neuroscience, 25: 439-456.
Wong H.Y., Kight, J.A., Hopfer, S.M., Zaharia, O., Leach, C.N. and
Sunderman, F.W. (1987) Lipoperoxides in plasma as measured by
liquid-chromatographic separation of malondialdehyde-thiobarbituric
acid adduct. Clin. Chem., 33-2: 214-220.
Yu, B.P. (1994) Cellular defenses against damage from reactive oxygen
species. Physiol. Rev., 74: 139-162.
Zuddas, A., Corsini, G.U., Schinelli, S., Johannessen, J.N., di Porzio, U. and
Kopin, I.J. (1989) MPTP treatment combined with ethanol or
acetaldehyde selectively destroys dopaminergic neurons in mouse
substantia nigra. Brain Res., 501: 1-10.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊