跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏鴻文
研究生(外文):Hung-Wen Wei
論文名稱:可降解式骨螺釘強度衰減之體外測試模式建立
論文名稱(外文):The mechanical testing model of biodegradable screws:in vitro degradation
指導教授:蔡瑞瑩鄭誠功鄭誠功引用關係
指導教授(外文):Ruey-Yug TsayCheng-Kung Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:65
中文關鍵詞:降解式力學測試體外
外文關鍵詞:biodegradablemechanical testingin-vitro
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前可降解式固定器所面臨最大的問題在於強度的大小及降解時間的維持,為了評估可降解式固定器的降解情形,可建立一套體外的強度衰減測試流程。然而文獻上對於測試流程及方法並不一致,有鑑於國內開始研發可降解式骨科固定器,需經由強度衰減測試流程來評估材料之機械強度性質,因此本研究參考國外文獻的報導及ASTM相關標準規範,以三種不同材料之可降解式骨螺釘為對象,建立一套國內研發可降解式固定器的體外強度衰減測試模式。
體外衰減實驗方面,本研究使用恆溫水槽,提供迴旋搖晃運動,使磷酸鹽緩衝溶液(PBS)與骨螺釘表面產生相對流動,pH值維持在7.40.2,溫度控制在3720C,於設定之時間點取出骨螺釘進行強度測試。強度測試方面,本研究利用剪力及三點彎曲測試,每次測試使用五根骨螺釘,以得到衰減強度與時間的關係。PLLA骨螺釘在第6-7週時強度產生急速衰減,PLGA骨螺釘(工研院原料)在第4週強度已幾乎消失。
可降解式骨螺釘透過本研究建立之體外強度衰減之測試模式,可得到機械強度隨時間衰減的情形。此套測試模式的建立可作為國內研發可降解式固定器之體外測試評估及參考依據。

The strength magnitude and retention time of biodegradable fixation devices can be understood and improved by mean of in vitro degradation tests. However from the literature review, it is found that the testing procedure and controlled environment applied in various vitro tests are not the same. Because the development of biodegradable fixation devices is one of the strategies to promote the biotechnological industry in this country, the purpose of this research is to establish an in vitro degradation system to monitor the degradation of mechanical strength of a developed biodegradable screw.
Conditions set for In vitro degradation and mechanical tests refer to ASTM F1635 and paper reviews. The screws were manufactured by three kinds different of materials. They were put in several containers and immersed in PBS(pH=7.40.2). The temperature of buffer solution was maintained at 3720C and allowed shaking. Both of shear and three points bending tests were carries out to determine the relation between the mechanical strength and the degradation time of the screws. The resulting mechanical strength reported is an average of 5 samples. The present results indicate that the strength of PLLA screws decreased significantly among week 6 to week 7 and PLGA screws(raw material from UCL, ITRI) lost almost all of its strength at about the 4th week.
This study has established an in vitro degradation system to test the strength attenuation of a biodegradable screw. The developed system could be applied to help evaluation and developing biodegradable screws in our country.

目 錄
Page
中文摘要………………………………………………………………….I
英文摘要………………………………………………………………...II
表目錄…………………………………………………………………..IV
圖目錄………………………………………………………………..….V
第一章 前言……………………………………………………………1
1-1生物降解性材料……………………………………………………..2
1-1.1高分子alpha羥基酸--Poly(hydroxy acids)………………….3
1-1.2生物降解性(biodegradation)…………………………………….7
1-2可降解式固定器…………………………………………………....11
1-3研究動機……………………………………………………………13
1-4文獻回顧……………………………………………………………14
1-5研究目的……………………………………………………………16
第二章 研究方法與材料……………………………………………..17
2-1可降解式骨螺釘設計與製造………………………………………17
2-2 體外強度衰減測試模式…………………………………………...21
2-2.1體外衰減實驗………………………………………………....22
2-2.2強度測試…………………………………………………….....30
第三章 結果…………………………………………………………..36
3-1體外衰減實驗結果…………………………………………………36
3-2強度測試結果………………………………………………………39
3-2.1剪力測試結果………………………………………………….39
3-2.2三點彎曲測試結果…………………………………………….44
第四章 討論…………………………………………………………..49
4-1體外衰減實驗結果討論……………………………………………50
4-2強度測試結果討論…………………………………………………55
第五章 結論…………………………………………………………..62
參考文獻………………………………………………......…..63

參考文獻
[1] Manninen, M. J. et al., Polylacyide screws in the fixation of olecranon osteotomies. A mechanical study in sheep, Acta Orthop. Scand., 63;437, 1992.
[2] Juutilainen, T., Patiala, H., Ruuskanen, M., and Rokkanen, P., Comparison of costs in ankle fractures treated with absorbable or metallic fixation devices, Archives of Orthopaedic & Trauma Surgery, 116 (4):204-8, 1997.
[3] Okada H., and Tooguchi H., Critical Reviews in Therapeutic Drug Carrier Systems, 12(1);1-99;1995.
[4] Schmit E. E., and Polistina, R. A., Surgical sutures, US Patent 3297033 January (1967).
[5] Claes, L., Burri, C., Kiefer, H., and Mutschler, W., Resorbiebare implantate zur refixierung von osteochondralen fragmenten in gelenkflachen, Akt. Traumatol., 16, 74, 1986.
[6] Hutmacher et al., A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications, International Journal of Oral & Maxillofacial Implants. 11(5):667-78, 1996 Sep-Oct.
[7] Salthouse, T. M. and Matlaga, B. F., Surg. Gynecol. Obstet., 142;544-50, 1976.
[8] Holland, S. I., Tighe B. J., and Gould, P. L., J. Control Rel., 4;155-80, 1986.
[9] James, M. Anderson, and Matthew S. Shive, Biodegradation and biocompatibility of PLA and PGA microspheres, Advanced Drug Delivery Reviews 28; 5-24, 1997.
[10] Kulkarni, RK, Pani, KC, Neuman, C, and Leonard, F., Polylactid acid for surgical implants, Arch. Surg., 93;839-43, 1966.
[11] Kulkarni, RK, Moore, EG, Hegyeli, AF, and Leonard, F., Biodegradable poly(lactidacid) polymers, J Biomed. Mater. Res., 5;169-81, 1971.
[12] Rokkanen, Pentti, MD, PhD et al., Absorbable Devices in the Fixation of Fractures, J. Trauma, 40(3)Suppl., 123S-127S, March 1996.
[13] Nakamura, S. et al., Polylactide screws in acetabular osteotomy, Acta Ortho. Scand., 64; 301, 1993.
[14] Partio, E. K.et al., Totally absorbable screws in fixation of subtalar extra articular arthrodesis in children with spastic neuromuscular disease: preliminary report of a randomized prospective study of fourteen arthrodeses fixed with absorbable or metallic screws, J. Ped. Orthop., 12;646, 1992.
[15] Majola, A. et al., Strength retention of SR-polylactic acid in the bone tissue and subcutis, A experimental study in rabbits, Acta Orthop. Scand., (suppl.) 61-65, 1990.
[16] Partio, E. K. et al., The indication for the fixation of fractures with totally absorbable SR-PGA screws, Acta Orthop. Scand., (Suppl. 237) 61;44, 1990.
[17] Tormala, P., Vasenius, J., Vainionpaa, S., Laiho, J., Pohjonen, T., and Rokkanen, P., Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study., Journal of Biomedical Materials Research. 25(1):1-22, 1991 Jan.
[18] Matsusue, Y., Yamamuro, T., Oka, M., Shikinami, Y., Hyon, SH., and Ikada, Y., In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods. Journal of Biomedical Materials Research. 26(12):1553-67, 1992 Dec.
[19] Suuronen, R. et al., Strength retention of self-reinforced poly-L-lactide screws and plates: an in vovo and in vitro study, Journal of Materials Science: Materials in Medicine, 3;426-31, 1992.
[20] Grizzi, I., Garreau, H., Li, S., and Vert, M., Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials. 16(4):305-11, 1995 Mar.
[21] Park, TG., Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition, Biomaterials. 16(15):1123-30, 1995 Oct.
[22] Claes, LE., Ignatius, AA., Rehm, KE., and Scholz, C., New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation, Biomaterials. 17(16):1621-6, 1996 Aug.
[23] Mauduit, J., Perouse, E., and Vert, M., Hydrolytic degradation of films prepared from blends of high and low molecular weight poly(DL-lactic acid)s, Journal of Biomedical Materials Research. 30(2):201-7, 1996 Feb.
[24] Penco, M., Marcioni, S., Ferruti, P.D., Antone, S., and Deghenghi, R., Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments, Biomaterials. 17(16):1583-90, 1996 Aug.
[25] “Standard Test Method for In vitro Degradation Testing of Poly(L-lactic Acid) Resin and Fabricated Form for Surgical Implants,” ASTM F1635-95, 1998.
[26] BIOFIXR-Tissue management system-catalogue. Appendix 16. BIOSCIENCE LTD. 1991.
[27] Juutilainen, T., Patiala, H., Rokkanen, P., and Tormala, P., Biodegradable biodegradable screws or plugs and wire fixation in olecranon and patella fractures combined with compared with metallic fixation, Archives of Orthopaedic & Trauma Surgery,114(6);319-23, 1995.
[28] Chu, C. C., The effect of pH on the in vitro degradation of poly(glycolide lactide) copolymer absorbable sutures, Journal of Biomedical Materials Research, 16(2):117-24, 1982 Mar.
[29] Pietrzak, WS., Sarver, DR., Bianchini, SD., and D'Alessio K., Effect of simulated intraoperative heating and shaping on mechanical properties of a bioabsorbable fracture plate material, Journal of Biomedical Materials Research. 38(1):17-24, 1997 Spring.
[30] Mainil-Varlet, P., Curtis, R., and Gogolewski, S., Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides, Journal of Biomedical Materials Research. 36(3):360-80, 1997 Sep 5.
[31] BIOFIXR-Tissue management system-catalogue. Appendix 18. BIOSCIENCE LTD. 1991.
[32] BIOFIXR-Tissue management system-catalogue. Appendix 17. BIOSCIENCE LTD. 1991.
[33] Biodegradable Bone Fixation Devices, edited by Michael H. Mayer, M.D., and Jeffrey O. Hollinger, Biomedical Applications of synthetic Biodegradable Polymers, Chapter 8, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top