|
參考文獻 [1] Manninen, M. J. et al., Polylacyide screws in the fixation of olecranon osteotomies. A mechanical study in sheep, Acta Orthop. Scand., 63;437, 1992. [2] Juutilainen, T., Patiala, H., Ruuskanen, M., and Rokkanen, P., Comparison of costs in ankle fractures treated with absorbable or metallic fixation devices, Archives of Orthopaedic & Trauma Surgery, 116 (4):204-8, 1997. [3] Okada H., and Tooguchi H., Critical Reviews in Therapeutic Drug Carrier Systems, 12(1);1-99;1995. [4] Schmit E. E., and Polistina, R. A., Surgical sutures, US Patent 3297033 January (1967). [5] Claes, L., Burri, C., Kiefer, H., and Mutschler, W., Resorbiebare implantate zur refixierung von osteochondralen fragmenten in gelenkflachen, Akt. Traumatol., 16, 74, 1986. [6] Hutmacher et al., A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications, International Journal of Oral & Maxillofacial Implants. 11(5):667-78, 1996 Sep-Oct. [7] Salthouse, T. M. and Matlaga, B. F., Surg. Gynecol. Obstet., 142;544-50, 1976. [8] Holland, S. I., Tighe B. J., and Gould, P. L., J. Control Rel., 4;155-80, 1986. [9] James, M. Anderson, and Matthew S. Shive, Biodegradation and biocompatibility of PLA and PGA microspheres, Advanced Drug Delivery Reviews 28; 5-24, 1997. [10] Kulkarni, RK, Pani, KC, Neuman, C, and Leonard, F., Polylactid acid for surgical implants, Arch. Surg., 93;839-43, 1966. [11] Kulkarni, RK, Moore, EG, Hegyeli, AF, and Leonard, F., Biodegradable poly(lactidacid) polymers, J Biomed. Mater. Res., 5;169-81, 1971. [12] Rokkanen, Pentti, MD, PhD et al., Absorbable Devices in the Fixation of Fractures, J. Trauma, 40(3)Suppl., 123S-127S, March 1996. [13] Nakamura, S. et al., Polylactide screws in acetabular osteotomy, Acta Ortho. Scand., 64; 301, 1993. [14] Partio, E. K.et al., Totally absorbable screws in fixation of subtalar extra articular arthrodesis in children with spastic neuromuscular disease: preliminary report of a randomized prospective study of fourteen arthrodeses fixed with absorbable or metallic screws, J. Ped. Orthop., 12;646, 1992. [15] Majola, A. et al., Strength retention of SR-polylactic acid in the bone tissue and subcutis, A experimental study in rabbits, Acta Orthop. Scand., (suppl.) 61-65, 1990. [16] Partio, E. K. et al., The indication for the fixation of fractures with totally absorbable SR-PGA screws, Acta Orthop. Scand., (Suppl. 237) 61;44, 1990. [17] Tormala, P., Vasenius, J., Vainionpaa, S., Laiho, J., Pohjonen, T., and Rokkanen, P., Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study., Journal of Biomedical Materials Research. 25(1):1-22, 1991 Jan. [18] Matsusue, Y., Yamamuro, T., Oka, M., Shikinami, Y., Hyon, SH., and Ikada, Y., In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods. Journal of Biomedical Materials Research. 26(12):1553-67, 1992 Dec. [19] Suuronen, R. et al., Strength retention of self-reinforced poly-L-lactide screws and plates: an in vovo and in vitro study, Journal of Materials Science: Materials in Medicine, 3;426-31, 1992. [20] Grizzi, I., Garreau, H., Li, S., and Vert, M., Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials. 16(4):305-11, 1995 Mar. [21] Park, TG., Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition, Biomaterials. 16(15):1123-30, 1995 Oct. [22] Claes, LE., Ignatius, AA., Rehm, KE., and Scholz, C., New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation, Biomaterials. 17(16):1621-6, 1996 Aug. [23] Mauduit, J., Perouse, E., and Vert, M., Hydrolytic degradation of films prepared from blends of high and low molecular weight poly(DL-lactic acid)s, Journal of Biomedical Materials Research. 30(2):201-7, 1996 Feb. [24] Penco, M., Marcioni, S., Ferruti, P.D., Antone, S., and Deghenghi, R., Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments, Biomaterials. 17(16):1583-90, 1996 Aug. [25] “Standard Test Method for In vitro Degradation Testing of Poly(L-lactic Acid) Resin and Fabricated Form for Surgical Implants,” ASTM F1635-95, 1998. [26] BIOFIXR-Tissue management system-catalogue. Appendix 16. BIOSCIENCE LTD. 1991. [27] Juutilainen, T., Patiala, H., Rokkanen, P., and Tormala, P., Biodegradable biodegradable screws or plugs and wire fixation in olecranon and patella fractures combined with compared with metallic fixation, Archives of Orthopaedic & Trauma Surgery,114(6);319-23, 1995. [28] Chu, C. C., The effect of pH on the in vitro degradation of poly(glycolide lactide) copolymer absorbable sutures, Journal of Biomedical Materials Research, 16(2):117-24, 1982 Mar. [29] Pietrzak, WS., Sarver, DR., Bianchini, SD., and D'Alessio K., Effect of simulated intraoperative heating and shaping on mechanical properties of a bioabsorbable fracture plate material, Journal of Biomedical Materials Research. 38(1):17-24, 1997 Spring. [30] Mainil-Varlet, P., Curtis, R., and Gogolewski, S., Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides, Journal of Biomedical Materials Research. 36(3):360-80, 1997 Sep 5. [31] BIOFIXR-Tissue management system-catalogue. Appendix 18. BIOSCIENCE LTD. 1991. [32] BIOFIXR-Tissue management system-catalogue. Appendix 17. BIOSCIENCE LTD. 1991. [33] Biodegradable Bone Fixation Devices, edited by Michael H. Mayer, M.D., and Jeffrey O. Hollinger, Biomedical Applications of synthetic Biodegradable Polymers, Chapter 8, 1995.
|