跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:駱香妃
研究生(外文):H. F. Luoh
論文名稱:血管張力素參與大白鼠孤獨核調控感壓反射反應之研究
論文名稱(外文):Participation of Angiotensins at the Nucleus Tractus Solitarii in the Modulation of Baroreceptor Reflex Response in the Rat
指導教授:陳慶鏗陳慶鏗引用關係
指導教授(外文):Samuel H.H. Chan
學位類別:博士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:204
中文關鍵詞:第二型血管張力素第三型血管張力素孤獨核感壓反射Fos 蛋白質AT1接受器亞型拮抗劑AT2接受器亞型拮抗劑AT2接受器亞型作用劑
外文關鍵詞:Angiotensin IIAngiotensin IIInucleus tractus solitariibaroreflexFos proteinlosartanPD-123319CGP 42112A
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
血管張力素參與大白鼠孤獨核調控感壓反射反應之研究
根據過去文獻報導以及我們實驗室過去研究的結果,第二型血管張力素(Angiotensin II, Ang II)及第三型血管張力素(Angiotensin III, Ang III)在孤獨核對感壓反射(baroreflex)具有抑制作用。因此,本論文有三個主要目的:(1) 探討AT1及AT2接受器亞型是否參與Ang II及Ang III調控誘發性(evoked)與自發性(spontaneous)感壓反射反應中。(2) Fos蛋白質是否參與在Ang II及Ang III抑制自發性感壓反射的作用中。(3) Ang III經由AT2接受器產生抑制自發性感壓反射是否需要磷酸鹽酵素(phosphatase)活化。實驗是採成熟雄性Sprague-Dawley大白鼠,先以腹腔注射戊巴比妥鈉鹽(pentobarbital sodium, 40 mg/kg, i.p.)麻醉,並以連續靜脈滴注方式補充戊巴比妥鈉鹽(20 mg/kg/h, i.v. infusion),以維持動物在穩定麻醉狀況下進行實驗。並配合神經藥理、頻譜分析及免疫化學染色等評估方法進行研究。
Ang參與持續性抑制調控誘發性感壓反射反應之探討
雙側微量注射Ang II或Ang III (10, 20或40 pmol)至孤獨核,對於以phenylephrine (5 mg/kg)所引發感壓反射反應之敏感性具有顯著抑制,並呈劑量相關性。Ang II (40 pmol)的抑制作用可被AT1接受器拮抗劑losartan (1.6 nmol)所逆轉,aminopeptidase A 抑制劑amastatin (3.3 nmol)所減少,並部份地受AT2接受器拮抗劑PD 123319 (1.6 nmol)影響,Ang III (40 pmol)的抑制作用卻可為AT1及AT2接受器拮抗劑 (1.6 nmol) 所逆轉。若雙側微量注射losartan (1.6 nmol)或PD-123319 (1.6 nmol)阻斷內生性血管張力素活性,則明顯地增強感壓反射反應。這些實驗結果顯示內生性的Ang II及Ang III可能經由作用在孤獨核上之AT1及AT2接受器,產生持續性抑制調控誘發性感壓反射。其中Ang II之抑制作用,可能有部份是源自於代謝轉換成Ang III產生的。
AT1及AT2接受器亞型參與血管張力素抑制調節自發性感壓反射之探討
本實驗進一步以動脈血壓及心跳速率訊號之交叉頻譜分析(cross-spectral analysis),評估在正常生理情況下,血壓自然波動所引發的感壓反射,也就是自發性感壓反射。雙側微量注射Ang II或Ang III (5, 10, 20或40 pmol)至孤獨核,有意義地抑制自發性感壓反射,雖然Ang II (10 pmol)的抑制作用可被AT1接受器拮抗劑losartan (1.6 nmol)所逆轉,卻不受AT2接受器拮抗劑PD 123319 (1.6 nmol)影響。而AT1及AT2接受器拮抗劑 (1.6 nmol)卻可顯著地逆轉Ang III (10 pmol)的抑制作用。這些結果顯示Ang II及Ang III對自發性感壓反射亦具抑制性調節作用,且其作用的接受器亞型與誘發性感壓反射相似。
AT1接受器與Fos蛋白質表現參與Ang II抑制性調控自發性感壓反射之探討
雙側微量注射Ang II至孤獨核,有意義地抑制自發性感壓反射反應,並伴隨著Fos蛋白質的表現。而孤獨核神經元上之Fos蛋白質表現會受AT1接受器亞型拮抗劑所阻斷,卻不明顯受AT2接受器亞型拮抗劑所影響。且無論預處理或同時雙側微量注射c-fos antisense oligonucleotide (AS-ODN)皆會阻斷或減弱Ang II在孤獨核上抑制調節自發性感壓反射反應的作用與Fos蛋白質免疫活性表現。由以上結果推論,Ang II可透過AT1接受器亞型誘發孤獨核神經元之Fos蛋白質表現,來參與抑制調控自發性感壓反射反應。
AT1接受器與Fos蛋白質表現及AT2接受器與磷酸鹽酵素活化參與Ang III抑制性調控自發性感壓反射之探討
雙側微量注射Ang III至孤獨核,顯著抑制自發性感壓反射反應,且亦會誘發孤獨核神經元之Fos蛋白質表現。而Fos蛋白質表現同樣亦受AT1接受器亞型拮抗劑所阻斷,卻不明顯受AT2接受器亞型拮抗劑所影響。且無論預處理或同時雙側微量注射c-fos AS-ODN皆會減弱Ang III在孤獨核上抑制自發性感壓反射反應與Fos蛋白質免疫活性表現有關。雙側微量注射AT2接受器亞型致效劑CGP 42112A,亦明顯產生對自發性感壓反射反應的抑制性調節,且此抑制性調節作用可被蛋白質酪胺酸(tyrosine, Tyr)磷酸鹽酵素抑制劑-sodium orthovanadate,及絲胺酸/酥胺酸(serine/threonine, Ser/Thr)磷酸鹽酵素抑制劑-okadaic acid所阻斷。由以上實驗結果可知,Ang III可透過AT1接受器亞型誘發孤獨核神經元Fos蛋白質表現,參與抑制性調控自發性感壓反射反應;此外,亦可透過AT2接受器亞型活化Tyr及Ser/Thr磷酸鹽酵素,參與抑制調節感壓反射。
結論
綜合以上實驗結果,可歸納得四個主要結論:(1) 內生性的Ang II及Ang III可能經由作用在孤獨核上之AT1及AT2接受器,產生持續性抑制調控感壓反射反應。(2) Ang II及Ang III對誘發性與自發性感壓反射,具有相似的調節作用。(3) 孤獨核神經元上之Fos蛋白質,經過AT1接受器,參與在Ang II及Ang III抑制調控自發性感壓反射作用。(4) Tyr及Ser/Thr磷酸鹽酵素,經過AT2接受器,參與在Ang III抑制調節自發性感壓反射作用。
英文摘要
Participation of Angiotensins at the Nucleus Tractus Solitarii in the Modulation of Baroreceptor
Reflex Response in the rat
The present study attempted to decipher the effects of angiotensins at the nucleus tractus solitarii (NTS) on baroreceptor reflex (BRR), the subtype(s) of angiotensin receptors involved, and whether AT1 receptor subtype-mediated expression of Fos protein or AT2 receptor subtype-mediated activation of phosphatases is involved in this process. Experiments were carried out in adult, male Sprague-Dawley rats that were anesthetized with pentobarbital sodium (50 mg/kg, i.p., with 20 mg/kg/h, i.v. infusion supplements).
Tonic inhibitory modulation of evoked baroreceptor reflex response by endogenous angiotensin II and angiotensin III at the nucleus tractus solitarii in the rat
We evaluated the endogenous action of angiotensin II (Ang II) and its active metabolite, angiotensin III (Ang III), at the NTS in the modulation of BRR response, and the subtype of angiotensin receptors involved in this process. Exogenous application of Ang II or Ang III (10, 20 or 40 pmol) by bilateral microinjection into the NTS significantly and dose-dependently suppressed the BRR response evoked by transient hypertension induced by phenylephrine (5 mg/kg, i.v.). The suppressive effect of Ang II (40 pmol) was blunted by the non-peptide AT1 receptor antagonist, losartan (1.6 nmol), attenuated by aminopeptidase A inhibitor, amastatin (3.3 nmol) and partial antagonized by an equimolar dose of non-peptide AT2 receptor antagonist, PD-123319. On the other hand, the depressive action of Ang III (40 pmol) was blunted by both AT1 and AT2 receptor antagonists (1.6 nmol). Blocking the endogenous activity of the angiotensins by microinjection into the bilateral NTS of losartan (1.6 nmol) or PD-123319 (1.6 nmol) elicited an appreciable enhancement of the BRR response. We conclude that, under a physiologic condition, both endogenous Ang II and Ang III may exert a tonic inhibitory modulation on the evoked BRR response by acting on the AT1 and AT2 receptors at the NTS. Furthermore, at least part of the suppressive action of Ang II may result from its metabolic conversion to Ang III.
Participation of AT1 and AT2 receptor subtypes in the inhibitory modulation of spontaneous baroreceptor reflex response by angiotensins at the nucleus tractus solitarii in the rat
We evaluated the modulatory action of Ang II and Ang III at the NTS on the spontaneous BRR response, and the subtype(s) of Ang receptors involved. Bilateral microinjection of Ang II or Ang III (5, 10, 20, or 40 pmol) into the NTS significantly suppressed the spontaneous BRR response, as represented by the magnitude of transfer function between systemic arterial pressure and heart rate signals, with the effect maximized at 10 pmol. Whereas the suppressive effect of Ang II (10 pmol) was reversed by co-administration of the non-peptide AT1 receptor antagonist, losartan (1.6 nmol), but not by the non-peptide AT2 receptor antagonist, PD-123319, both antagonists appreciably reversed the depressive action of Ang III (10 pmol). We conclude that the Ang II and Ang III may exert a inhibitory modulation on the spontaneous BRR response. Whereas the modulatory action of Ang III was exerted via both AT1 and AT2 receptor subtypes, the same action by Ang II engaged only the AT1 receptor subtype at the NTS.
AT1 receptor subtype-mediated expression of Fos protein is involved in the inhibitory modulation of spontaneous baroreceptor reflex response by angiotensin II at the nucleus tractus solitarii in the rat
Our previous work indicated that the inhibitory modulatory action of Ang II at the NTS on spontaneous BRR response is mediated via the AT1 subtype receptors. The present study evaluated the hypothesis that expression of Fos protein at the NTS is involved in this process. Bilateral microinjection of Ang II (10 pmol) into the NTS significantly suppressed the spontaneous BRR response. This was accompanied by the presence of Fos-like immunoreactivity in the NTS. Both the inhibition on spontaneous BRR response and induction of c-fos in NTS neurons elicited by Ang II were discernibly attenuated by pretreatment or co-microinjection with a 15-mer antisense c-fos oligonucleotide (20 pmol). In addition, those two actions of Ang II were reversed by co-administration of the non-peptide AT1 receptor antagonist, losartan (1.6 nmol), but not by the non-peptide AT2 receptor antagonist, PD-123319 (1.6 nmol). We conclude that Fos expression mediated via AT1 receptor subtype may underlie the inhibitory modulation by Ang II at the NTS on the spontaneous BRR response.
AT1 receptor subtype-mediated expression of Fos protein and AT2 receptor subtype-mediated activation of phosphatase are involved in the inhibitory modulation of spontaneous baroreceptor reflex response by angiotensin III at the nucleus tractus solitarii in the rat
Our previous work indicated that the inhibitory modulatory action of Ang III at the NTS on spontaneous BRR response is mediated via both AT1 and AT2 subtype receptors. The present study evaluated the hypothesis that expression of Fos protein via AT1 receptor and activation phosphatase via AT2 receptor at the NTS are involved in this process. Bilateral microinjection of Ang III (10 pmol) into the NTS significantly suppressed the spontaneous BRR response. This was accompanied by the presence of Fos-like immunoreactivity in the NTS. Both the inhibition on spontaneous BRR response and induction of c-fos in NTS neurons elicited by Ang III were discernibly attenuated by pretreatment or co-microinjection with a 15-mer antisense c-fos oligonucleotide (20 pmol). In addition, those two actions of Ang III were reversed by co-administration of losartan (1.6 nmol). Furthermore, the inhibitory effect of Ang III mediated by AT2 subtype receptors is mimicked by CGP 42112A (10 pmol), a AT2 receptor agonist, and blocked by tyrosine phosphatase inhibitor, sodium orthovanadate (5 nmol), and serine/threonine phosphatase inhibitor, okadaic acid (1 pmol). We conclude that Fos expression mediated via AT1 receptor subtype and activation of tyrosine, serine/threonine phosphatase via AT2 receptor subtype may underlie the inhibitory modulation by Ang III at the NTS on the spontaneous BRR response.
Conclusion
Four major conclusions arise from the above observations. First, both endogenous Ang II and Ang III may exert a tonic inhibitory modulation on the BRR response by acting on the AT1 and AT2 receptors at the NTS. Second, Ang II and Ang III exert similar modulatory action on evoked and spontaneous BRR. Third, Fos protein may play an important physiologic role in AT1 receptor-mediated inhibitory modulatory on spontaneous BRR response. Fourth, activation of phosphatase is involved in AT2 receptor-mediated inhibitory modulation on spontaneous BRR response.
封面
目錄
中文摘要
英文摘要
前言
第一部份 文獻回顧及研究目的
第一章 腎性血管張力素系統
第二章 感壓反射
第三章 心血管訊號頻譜分析
第四章 即時先期基因 c-fos
第五章 研究動機與目的
第二部份 實驗材料與方法
第六章 神經藥理、頻譜分析及免疫組織化學法
第三部份 研究結果
第七章 Ang 作用在大白鼠孤獨核之AT及AT接受器亞型參與持續性抑制調控誘發性感歷反射反應之研究
第八章 AT及AT接受器亞型參與大白鼠孤獨核調控自發性感壓反射反應之研究
第九章 AT接受器亞型與 Fos 蛋白質表現參與第二型血管張力在大白鼠孤獨核調控自發性感壓反射反應之研究
第十章 AT接受器亞型與 Fos蛋白質表現及AT接受器亞型與磷酸鹽酵素活化參與第三型血管張力素在大白鼠孤獨核調控自發性感歷反射反應之研究
第十一章 綜合討論
參考文獻
圖表說明
Abhold, R.H., Sullivan, M.J., Wright, J.W. and Harding, J.W. (1987) Binding, degradation and pressor activity of angiotensin II and angiotensin III after aminopeptidase inhibition with amastatin and bestatin. J. Pharmacol. Exp. Ther. 242: 957-962.
Achari, N.K. and Downman, C.B.B. (1978) Inhibition of reflex bradycardia by stimulation cerebral motor cortex. Brain Res. 150: 198-200.
Akselrod, S. (1988) Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol. Sci. 9: 6-9.
Akselrod, S., Eliash, S., Oz, O. and Cohen, S. (1987) Hemodynamic regulation in SHR: investigation by spectral analysis. Am. J. Physiol. 253: H176-H183.
Allen, A.M., Moeller, I., Jenkins, T.A., Zhuo, J., Aldred, G.P., Chai, S.Y. and Mendelsohn, F.A.O. (1998) Angiotensin receptors in the nervous system. Brain Res. Bull. 47: 17-28.
Appenrodt, E. and Brattstrom, A. (1994) Effects of central angiotensin II and angiotensin III on baroreflex regulation. Neuropeptides 26: 175-180.
Arregui, A. and Iversen, L.L. (1978) Angiotensin-converting enzyme: presence of high activity in choroid plexus of mammalian brain. Eur. J. Pharmacol. 52: 147-150.
Badoer, E. and McKinlay, D. (1997) Effect of intravenous angiotensin II on Fos distribution and drinking behavior in rabbits. Am. J. Physiol. 272: R1515-R1524.
Badoer, E., McKinley, M.J., Oldfield, B.J. and McAllen, R.M. (1992) Distribution of hypothalamic, medullary and lamina terminals neurons expressing fos after hemorrhage in conscious rats. Brain Res. 582: 323-328.
Bartel, D.P., Sheng, M., Lau, L.F. and Greenberg, M.E. (1989) Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Gene Dev. 3: 304-313.
Benarroch, E.E. and Schmeichel, A.M. (1998) Immunohistochemical localization of the angiotensin II type 1 receptor in human hypothalamus and brainstem. Brain Res. 812: 292-296.
Bernardi, L., Leuzzi, S., Radaelli, A., Passino, C., Johnston, J.A. and Sleight, P. (1994) Low-frequency spontaneous fluctuations of R-R interval and blood pressure in conscious human: a baroreceptor or central phenomenon ? Clin. Sci. 87: 649-654.
Billman, G.E., Schwartz, P.J. and Stone, H.L. (1982) Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation 66: 874-880.
Blair-West, J.R., Coghlin, J.P., Denton, D.A., Funder, J.W., Scoggins, B.A. and Wright, R.D. (1971) Effect of the heptapeptide(2-8) and hexapeptide (3-8) fragments of angiotensin II on aldosterone secretion. J. Clin. Endocrinol. Metab. 32: 575-578.
Blankley, C.J., Hodges, J.C., Klutchko, S.R., Himmelsbach, R.J., Chucholowski, A.W., Connolly, C.L., Neergaard, S.J., Vannieuwenhze, M., Sebastian, A., Quin, J. I., Essenburg, A.D. and Cohen, D.M. (1991) Synthesis and structure-activity relationship of a novel series of non-peptide angiotensin II receptor binding inhibitors specific for the AT2 subtype. J. Med. Chem. 34: 3248-3260.
Blume, A., Lebrun, C.J., Herdegen, T., Bravo, R., Linz, W., Mollenhoff, E. and Unger, T. (1997) Increased brain transcription factor expression by angiotensin in genetic hypertension. Hypertension 29: 592-598.
Blume, A., Seifert, K., Lebrun, C.J., Herdegen, T., Mollenhoff, E. and Unger, T. (1995) Differential temporal expression of inducible transcription factors (ITF) by angiotensin II in the rat brain. Naunyn-Schmiedebergs Arch. Pharmacol. 351: 590. Abstract.
Bottari, S.P., de Gasparo, M., Steckelings, U.M. and Levens, N.R. (1993) Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front. Neuroendocrinol. 14: 123-171.
Bottari, S.P., King, I.N., Reichlin, S., Dahlstroem, L., Lydon, N. and de Gasparo, M. (1992) The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem. Biophys. Res. Comm. 183: 206-211.
Brattstrom, A., Sonntag, M., Listing, H., Miller, R. and DeJong, W. (1992) Neuropeptides within the nucleus tractus solitarii modulate the central cardiovascular control process. Brain Res. 91: 75-79.
Buisson, B., Laflamme, L., Bottari, S.P., de Gasparo, M., Gallo-Payet, N. and Payet, M.D. (1995) A G protein is involved in the angiotensin AT(2) receptor inhibition of the T-type calcium current in non-differentiated NG108-15 cells. J. Biol. Chem. 270: 1670-1674.
Bumpus, F.M., Catt, K.J., Chiu, A.T., DeGasparo, M., Goodfriend, T., Husain, A., Peach, M.J., Taylor, D.J. and Timmermans, P.B.M.W.M. (1991) Nomenclature for angiotensin receptors. Hypertension 17: 720-721.
Campagnole-Santos, M.J., Diz, D.I. and Ferrario, C.M. (1988) Baroreceptor reflex modulation by angiotensin II at the nucleus tractus solitarii. Hypertension 11: I167-I171.
Campbell, D.J. and Habener, J.F. (1986) Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J. Clin. Invest. 78: 31-39.
Casto, R. and Phillips, M.I. (1985) Neuropeptide action in nucleus tractus solitarius: angiotensin specificity and hypertensive rats. Am. J. Physiol. 249: R341-R347.
Casto, R. and Phillips, M.I. (1986) Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats. Am. J. Physiol. 250: R193-R198.
Cavalie, A., Berninger, B., Hass, C.A., Garcia, D.E., Lindholm, D. and Lux, H.D. (1994) Constitutive upregulation of calcium channel currents in rat phaeochromocytoma cells: role of c-fos and c-jun. J. Physiol. 479: 11-27.
Ceccatelli, S., Vilar, M.J., Goldstein, J. and Hokfelt, T. (1989) Expression of c-fos immunoreactivity in transmitter-characterized neurons after stress. Proc. Natl. Acad. Sci. USA 86: 9569-9573.
Cerutti, C., Barres, C. and Paultre, C. (1994) Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. Am. J. Physiol. 266: H1993-H2000.
Cerutti, C., Gustin, M.P., Paultre, C.Z., Lo, M., Julein, C., Vincent, M. and Sassard, J. (1991) Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am. J. Physiol. 261: H1292-H1299.
Chaki, S. and Inagami, T. (1992) A newly found angiotensin II receptor subtype mediates cyclic GMP formation in differentiated neuro-2A cells. Eur. J. Pharmacol. 225: 355-356.
Chalmers, J., Arnolda, L., Llewellyn-Smith, I., Minson, J., Pilowsky, P. and Suzuki, S. (1994) Central neurons and neurotransmitters in the control of blood pressure. Clin. Exp. Pharmacol. Physiol. 21: 819-829.
Chan, J.Y.H., Barnes, C.D. and Chan, S.H.H. (1990) Tonic enhancement of the sensitivity of baroreceptor reflex by endogenous substance P in the rat. Regul. Pept. 29: 199-213.
Chan, J.Y.H. and Chan, S.H.H. (1985) Multiple roles of nucleus reticular gigantocellularis in physiologic and pharmacologic regulation of cardiovascular functions. Ann. Singapore Acad. Med. 14: 158-167.
Chan, J.Y.H., Chan, S.H.H., Chen, C.F. and Barnes, C.D. (1987) Effects of bestatin on the central cardiovascular regulatory mechanisms in the rat. Regul. Pept. 18: 75-84.
Chan, J.Y.H., Chen, W.-C., Lee, H.-Y. and Chan, S.H.H. (1998) Elevated Fos expression in the nucleus tractus solitarii is associated with reduced baroreflex response in spontaneously hypertensive rats. Hypertension 32: 939-944.
Chan, J.Y.H., Jang, S.F. and Chan, S.H.H. (1992) Inhibition by locus coeruleus on the baroreceptor reflex response in the rat. Neurosci. Lett. 144: 225-228.
Chan, J.Y.H., Shih, C.-D. and Chan, S.H.H. (1993) Participation of endogenous neuropeptide Y in the suppression of baroreceptor reflex response by locus coeruleus in the rat. Regul. Pept. 239-300.
Chan, J.Y.H., Shih, C.-D. and Chan, S.H.H. (1997) Enhancement of spontaneous baroreflex by antisense c-fos oligonucleotide treatment in the NTS of the rat. Am. J. Physiol. 273: H2200-H2208.
Chan, R.K.W. and Sawchenko, P.E. (1994) Spatially and temporally differentiated patterns of c-fos expression in brainstem catecholaminergic cell groups induced by cardiovascular challenges in the rat. J. Comp. Neurol. 348: 433-460.
Changaris, D.G., Keil, L.C. and Severs, W.B. (1978) Angiotensin II immunohistochemistry of the rat brain. Neuroendocrinology 25: 257-274.
Chen, C.T., Chan, J.Y.H., Barnes, C.D. and Chan, S.H.H. (1990) Tonic suppression of baroreceptor reflex by endogenous neurotensin in the rat. Regul. Pept. 28: 23-37.
Chiasson, B.J., Armstrong, J.N., Hooper, M.L., Murphy, P.R. and Robertson, H.A. (1994) The application of antisense oligonucleotide technology to the brain: some pitfalls. Cell. Mol. Neurobiol. 14: 507-521.
Chiasson, B.J., Hooper, M.L., Murphy, P.R. and Robertson, H.A. (1992) Antisense oligonucleotide eliminates in vivo expression of c-fos in mammalian brain. Eur. J. Pharmacol. 227: 451-453.
Chiu, R., Boyle, W.J., Meek, J., Smeal, T., Hunter, T. and Karin, M. (1988) The c-fos protein interacts with c-jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54: 541-552.
Ciriello, J. (1983) Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neurosci. Lett. 36: 37-42.
Ciriello, J., Hochstenbach, S.L. and Roder, S. (1994) Central projections of baroreceptor and chemoreceptor afferent fibers in the rat. In: Barraco, R.A. (Ed.), Nucleus of the Solitary Tract. CRC Press, Boca Raton, PP. 35-50.
Clark, A.J.L., Balla, T., Jones, M.R. and Catt, K.J. (1992) Stimulation of early gene expression by angiotensin II in bovine adrenal glomerulosa cells: roles of calcium and protein kinase C. Mol. Endocrinol. 6: 1889-1898.
Cohen, P. (1989) The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58: 453-508.
Crill, W.E. and Reis, D.J. (1968) Distribution of carotid sinus and depressor nerve in cat brain stem. Am. J. Physiol. 214: 269-276.
Crooke, S.T. (1992) Therapeutic application of oligonucleotides. Annu. Rev. Pharmacol. Toxicol. 32: 329-376.
Curran, T., Gordon, M.B., Rubino, K.L. and Sambucetti, L.S. (1987) Isolation and characterization of the c-fos (rat) cDNA and analysis of post-translational modification in vitro. Oncogene 2: 79-84.
Curran, T., Miller, D.A., Zokas, F.L. and Verma, I.M. (1984) Viral and cellular fos proteins: a comparative analysis. Cell 36: 259-268.
Curran, T. and Morgan, J.I. (1985) Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science 229: 1265-1268.
Curran, T., Teich, N.M. (1982) Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000 dalton phosphoprotein. J. Virol. 42: 114-122.
Czachurski, J., Dembowsky, K., Seller, H., Nobling, R. and Taugner, R. (1988) Morphology of electrophysiologically identified baroreceptor afferents and second order neurons in the brainstem of the cat. Arch. Ital. Biol. 126: 129-144.
Dampney, R.A.L. (1994) Projections from the NTS to the ventrolateral medulla: role in vasomotor control. In: Barraco, R.A. (Ed.), Nucleus of the Solitary Tract. CRC Press, Boca Raton, pp. 119-134.
Dampney, R.A.L., Li, Y.-W., Hirooka, Y., Potts, P. and Polson, J.W. (1995) Use of c-fos functional mapping to identify the central baroreceptor reflex pathway: advantages and limitations. Clin. Exp. Hypertens. 17: 197-208.
De Boer, R.W., Karemaker, J.M. and Strackee, J. (1987) Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Physiol. 253: H680-H689.
de Gasparo, M., Husian, A., Alexander, W., Catt, K.J., Chiu, A.T., Drew, M., Goodfriend, T., Harding, J.W., Inagami, T. and Timmermans, P.B.M.W.M. (1995) Proposed update of angiotensin receptor nomenclature. Hypertension 25: 924-927.
Dean, C. and Seagard, J.L. (1995) Expression of c-fos protein in the nucleus tractus solitarius in response to physiological activation of carotid baroreceptors. Neuroscience 69: 249-257.
Donoghue, S., Felder, R.B., Jordan, D. and Spyer, K.M. (1984) The central projections of carotid baroreceptors and chemoreceptors in the cat: a neurophysiological study. J. Physiol. 347: 397-410.
Donoghue, S., Garcia, M., Jordan, D. and Spyer, K.M. (1982) Identification and brain-stem projections of aortic baroreceptor afferent neurons in nodose ganglia of cats and rabbits. J. Physiol. 322: 337-352.
Dun, N.J., Dun, S.L. and Chiaia, N.L. (1993) Hemorrhage induced Fos immunoreactivity in rat medullary catecholaminergic neurons. Brain Res. 608: 223-232.
Duncia, J.V., Carini, D.J., Chiu, A.T., Johnson, A.L., Price, W.A., Wong, P.C., Wexler, R.R. and Timmermans, P.B.M.W.M. (1992) The discovery of Dup 753, a potent, orally active nonpeptide angiotensin II receptor antagonist. Med. Res. Rev. 12: 149-191.
Dzau, V.J., Brenner, A. and Emmett, N.L. (1982) Evidence for renin in rat brain: differentiation from other renin-like enzymes. Am. J. Physiol. 152: E292-E297.
Dwarki, N.J., Montiminy, M. and Verma, I.M. (1990) Both the basic region and the ''leucine zipper'' domain of the cyclic AMP response element binding (CREB) protein are essential for transcriptional activation. EMBO J. 9: 225-232.
Eckberg, D.L., Cavanaugh, M.S., Mark, A.L. and Abboud, F.M. (1975) A simplified neck suction device for activation of carotid baroreceptors. J. Lab. Clin. Med. 85: 167-173.
Eckberg, D.L. and Eckberg, M.J. (1982) Humam sinus node responses to repetitive, ramped carotid baroreceptor stimuli. Am. J. Physiol. 242: H638-H644.
Erickson, J.T. and Millhorn, D.E. (1991) Fos-like protein is induced in neurons of the medulla oblongata after stimulation of the carotid sinus nerve in awake and anesthetized rats. Brain Res. 567: 11-24.
Felix, D., Harding, J.W. and Imboden, H. (1988) The hypothalamic-angiotensin system: location and functional consideration. Clin. Exp. Hypertens. 10: 45-62.
Felix, D. and Schlegel, W. (1978) Angiotensin receptive neurons in the subfornical organ. Structure-activity relations. Brain Res. 149: 107-116.
Ferrario, C.M. and Iyer, S.N. (1998) Angiotensin-(1-7): a bioactive fragment of the renin-angiotensin system. Regul. Pept. 78: 13-18.
Fink, G.D. and Bruner, C.A. (1985) Hypertension during chronic peripheral and central infusion of angiotensin III. Am. J. Physiol. 249: E201-E208.
Fischer-Ferraro, C., Nahmod, V.E., Goldstein, D.J. and Finkielman, S. (1971) Angiotensin and renin in rat and dog brain. J. Exp. Med. 133: 353-361.
Fow, J.E., Averill, D.B. and Barnes, K.L. (1994) Mechanisms of angiotensin-induced hypotension and bradycardia in the medial solitary tractus nucleus. Am. J. Physiol. 267: H259-H266.
Fuxe, K., Ganten, D., Kokfelt, T. and Bolme, P. (1976) Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminals in the brain and spinal cord in the rat. Neurosci. Lett. 2: 229-234.
Ganten, D., Hermann, K., Ungen, T. and Lang, R.E. (1983) The tissue renin-angiotensin systems: focus on brain angiotensin, adrenal gland and arterial wall. Clin. Exp. Hypertens. A5: 1009-1017.
Ganten, D., Lang, R.E., Lehmann, E. and Unger, T.H. (1984) Brain angiotensin: on the way to becoming a well-studied neuropeptide system. Biochem. Pharmacol. 22: 3523-3528.
Ganten, D., Marquez-Julio, A., Granger, P., Hayduk, K., Karsunky, K.P., Boucher, R. and Genest, J. (1971) Renin in dog brain. Am. J. Physiol. 221: 1733-1737.
Garcia-Sainz, J.A., Garcia-Caballero, A. and Gonzalez-Espinosa, C. (1998) Angiotensin AT1 receptors in clone 9 rat liver cells: Ca2+ signaling and c-fos expression. Eur. J. Pharmacol. 362: 235-243.
Gehlert, D.R., Gackenheimer, S.L., Schober, D.A. (1991) Autoradiographic localization of subtypes of angiotensin II antagonist binding in the rat brain. Neuroscience 44: 501-514.
Gehlert, D.R., Speth, R.C., Healy, D.P. and Wamsley, J.K. (1984) Autoradiographic localization of angiotensin II receptors in the rat brain stem. Life Sci. 34: 1565-1571.
Gilman, M.Z. (1988) The c-fos serum response element responds to protein kinase C-dependent and -independent signals but not to cyclic AMP. Genes Dev. 2: 394-402.
Gilman, M.Z., Wilson, R.N. and Weinberg, R.A. (1986) Multiple protein binding sites in the 5¢ flanking region regulate c-fos expression. Mol. Cell Biol. 6: 4305-4314.
Goelet, P., Castellucci, V.F., Schacher, S. and Kandel, E.R. (1986) The long and the short of long-term memory-a molecular framework. Nature 322: 419-422.
Gonzales, G.A. and Montminy, M.R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675-680.
Gonzalez-Espinosa, C. and Garcia-Sainz, J.A. (1992) Angiotensin II and active phorbol esters induce proto-oncogene expression in isolated rat hepatocytes. Biochim. Biophys. Acta 1136: 309-314.
Graham, J.C., Hoffman, G.E. and Sved, A.F. (1995) c-Fos expression in brain in response to hypotension and hypertension in conscious rats. J. Auton. Nerv. Syst. 55: 92-104.
Grasso, R., Rizzi, G., Schena, F. and Cevese, A. (1995) Arterial baroreceptors are not essential for low frequency oscillation of arterial pressure. J. Auton. Nerv. Syst. 50: 323-331.
Greenberg, M.E., Greene, L.A. and Ziff, E.B. (1985) Nerve growth factor and epidermal growth factor induce rapid changes in proto-oncogene transcription in PC12 cells. J. Biol. Chem. 260: 14101-14110.
Greenberg, M.E., Siegfried, Z. and Ziff, E.B. (1987) Mutation of the c-fos gene dyad symmetry element inhibits serum inducibility in vivo and the nuclear regulatory factor binding in vitro. Mol. Cell Biol. 7: 1217-1225.
Greenberg, M.E. and Ziff, E.B. (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433-438.
Greene, L.A. and Tischler, A.S. (1982) PC12 pheochromocytoma cultures in neurobiological research. Adv. Cell. Neurobiol. 3: 373-414.
Gribbin, S., Pickering, T.G., Sleight, P. and Peto, R. (1971) Effect of age and high blood pressure on baroreflex sensitivity in man. Circ. Res. 29: 424-431.
Griendling, K.K., Lassegue, B. and Alexander, W. (1996) Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 36: 281-306.
Grundemar, L., Wahlestedt, C. and Reis, D.J. (1991) Long-lasting inhibition of the cardiovascular responses to glutamate and the baroreceptor reflex elicited by neuropeptide Y injected into the nucleus tractus solitarius of the rat. Neurosci. Lett. 122: 135-139.
Hahn, A.W.A., Jonas, U., Buehler, F.R. and Resink, T.J. (1993) Identification of a fourth angiotensin AT1 receptor subtype in rat. Biochem. Biophys. Res. Commun. 192: 1260-1265.
Hammond, C. (1996) The chemical synapses. In: Hammond, C. (Ed.), Cellular and Molecular Neurobiology. Paris, Academic Press, pp. 43.
Hancock, M.B. (1988) Evidence for direct projections from the nucleus of the solitary tract onto medullary adrenaline cells. J. Comp. Neurol. 276: 460-467.
Harding, J.W. and Felix, D. (1987a) Angiotensin-sensitive neurons in the rat paraventricular nucleus: relative potencies of angiotensin II and angiotensin III. Brain Res. 410: 130-134.
Harding, J.W. and Felix, D. (1987b) The effect of the aminopeptidase inhibitors amastatin and bestatin on angiotensin-evoked neuronal activity in rat brain. Brain Res. 424: 299-304.
Hayashida, W., Horiuchi, M. and Dzau, V.J. (1996) Intracellular third loop domain of angiotensin II type-2 receptor. J. Biol. Chem. 271: 21985-21992.
Head, G.A. and Williams, N.S. (1992) Hemodynamic effects of central angiotensin I, II and III in conscious rabbits. Am. J. Physiol. 263: R845-R851.
Healy, D.P., Rettig, R. and Printz, M.P. (1984) Evidence of an endogenous Ang II system in the rat nucleus tractus solitarius. Clin. Exp. Hypertens. A6: 1743-1747.
Heilig, M., Engel, J.A. and Soderpalm, B. (1993) C-fos antisense in the nucleus accumbens blocks the locomotor stimulant action of cocaine. Eur. J. Pharmcol. 236: 339-340.
Hein, L., Barsh, G.S., Pratt, R.E., Dzau, V.J. and Kobilka, B.K. (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor gene in mice. Nature 377: 744-747.
Herbert, J. (1996) Studying the central actions of angiotensin using the expression of immediate-early genes: expectations and limitations. Regul. Pept. 66: 13-18.
Herbert, J., Forsling, M.L., Howes, S.R., Stacey, P.M. and Shiers, H.M. (1992) Regional expression of c-fos antigen in the basal forebrain following intraventricular infusions of angiotensin and its modulation by drinking either water or saline. Neuroscience 51: 867-882.
Hermann, K., Phillips, M.I., Hilgenfeldt, U. and Raizada, M.K. (1988) Biosynthesis of angiotensinogen and angiotensins by brain cells in primary culture. J. Neurochem. 51: 398-405.
Hirooka, Y., Head, G.A., Potts, P.D., Godwin, S.J., Bendle, R.D. and Dampney, R.A.L. (1996) Medullary neurons activated by angiotensin II in the conscious rabbit. Hypertension 27: 287-296.
Hogarty, D.C., Speakman, E.A., Puig, V. and Phillips, M.I. (1992) The role of angiotensin AT1 and AT2 receptors in the pressor, drinking and vasopressin responses to central angiotensin. Brain Res. 586: 289-294.
Hohle, S., Spitznagel, H., Rascher, W., Culman, J. and Unger, T. (1995) Angiotensin AT1 receptor-mediated vasopressin release and drinking are potentiated by an AT2 receptor antagonist. Eur. J. Pharmacol. 275: 277-282.
Hooper, M.L., Chiasson, B.J. and Robertson, H.A. (1994) Infusion into the brain of an antisense oligonucleotide to the immediate-early gene c-fos suppresses production of Fos and produces a behavioral effect. Neuroscience 63: 917-924.
Hsu, S.-M., Raine, L. and Fanger, H. (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29: 577-580.
Huang, X.-C., Deng, T. and Sumners, C. (1998) Angiotensin II stimulates activation of Fos-regulating kinase and c-Jun NH2-terminal kinase in neuronal cultures from rat brain. Endocrinology 139: 245-251.
Huang, X.-C., Richards, E.M. and Sumners, C. (1996) Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J. Biol. Chem. 271: 15635-15641.
Hughes, P. and Dragunow, M. (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol. Rev. 47: 133-178.
Hunt, S.P., Pini, A. and Evan, G. (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328: 632-634.
Hunter, A.J., Leslie, R.A., Gloger, I.S. and Lawrence, M. (1995) Probing the function of novel gene in the nervous system: is antisense the answer? Trends Neurosci. 18: 329-331.
Hutchinson, J.S., Csicsmann, J., Korner, P.I. and Johnston, C.I. (1978) Characterization of immunoreactive angiotensin in canine cerebrospinal fluid as des-Asp1-angiotensin II. Clin. Sci. Mol. Med. 54: 147-151.
Ichiki, T., Labosky, P.A., Shiota, C., Okuyama, S., Imagawa, Y., Fogo, A., Niimura, F., Ichikawa, I., Hogan, B.L.M. and Inagami, T. (1995) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377: 748-750.
Inagami, T., Iwai, N., Sasaki, K., Yamano, Y., Bardhan, S., Chaki, S., Guo., D.F., Furuta, H., Ohyama, K., Kambayashi, Y., Takahashi, K. and Ichiki, T. (1994) Cloning, expression and regulation of angiotensin II receptors. Eur. Heart J. 15: 104-107.
Inoue, K., Miyake, S., Kumashiro, M., Ogata, H., Ueta, T. and Akatsu, T. (1991) Power spectral analysis of blood pressure variability in traumatic quadreplegic humans. Am. J. Physiol. 260: H842-H847.
Ishihara, H., Martin, B.L., Brautigan, D.L., Karaki, H., Ozaki, H., Kato, Y., Fusetani, N., Watabe, S., Hashimoto, K., Uemura, D. and Hartshorne, D.J. (1989) Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun. 159: 871-877.
Iwai, N. and Inagami, T. (1992) Identification of two subtypes in the rat type-1 angiotensin II receptor. FEBS Lett. 298: 257-260.
Japundzic, N., Grichois, M.L., Zitoun, P., Laude, D. and Elghozi, J.L. (1990) Spectral analysis of blood pressure and heart rate in conscious rats: effect of autonomic blockers. J. Auton. Nerv. Syst. 30: 91-100.
Julien, C., Zhang, Z.-Q., Cerutti, C. and Barres, C. (1995) Hemodynamic analysis of arterial pressure oscillations in conscious rats. J. Auton. Nerv. Syst. 50: 239-252.
Just, A., Wittmann, U., Nafz, B., Wagner, C.D., Ehmke, H., Kirchheim, H.R. and Persson, P.B. (1994) The blood pressure buffering capacity of nitric oxide by comparison to the baroreceptor reflex. Am. J. Physiol. 267: H521-H527.
Kakar, S.S., Sellers, J.C., Devor, D.C., Musgrove, L.C. and Neil, J.D. (1992) Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biophys. Res. Commun. 183: 1090-1096.
Kalia, M. (1987) Anatomy and neurochemistry of the nucleus of the tractus solitarius. In: Hainsworth, R., McWillian, P.N. and Mary, D.A.S.G. (Eds.), Cardiogenic Reflexes. Oxford University Press, New York, pp. 171-184.
Kalia, M. and Sullivan, J.M. (1982) Brain stem projection of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211: 248-264.
Kalia, M. and Welles, R.V. (1980) Brain stem projections of the aortic nerve in the cat: a study using tetramethyl benzidine as the substrate for horseradish peroxidase. Brain Res. 188: 23-32.
Kambayashi, Y., Bardhan, S., Takahashi, K., Tsuzuki, S., Inui, H., Hamakubo, T. and Inagami, T. (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J. Biol. Chem. 268: 24543-24546.
Kang, J., Posner, P. and Sumners, C. (1994) Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am. J. Physiol. 267: C1389-C1397.
Kang, J., Richards, E.M., Posner, P. and Sumners, C. (1995) Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment. Am. J. Physiol. 268: C278-C282.
Kang, J., Sumners, C. and Posner, P. (1993) Angiotensin II types 2 receptor-modulated changes in potassium currents in cultured neurons. Am. J. Physiol. 265: C607-C616.
Kang, P.M., Nakouzi, A., Simpson, T., Scheuer, J. and Buttrick, P.M. (1996) Role of endogenous renin-angiotensin system in c-fos activation of PKC-I translocation in adult rat hearts. Am. J. Physiol. 270: H2177-H2183.
Kanter, R.K., Erickson, J.T. and Millhorn, D.E. (1994) Activation of the c-fos gene in prodynorphin- and proenkephalin-expressing cells of nucleus tractus solitarius after seizures. Exp. Neurol. 129: 290-298.
Katona, P.G. and Jih, F. (1975) Respiratory sinus arrhythmia noninvasive measure of parasympathetic cardiac control. J. Appl. Physiol. 39: 801-805.
Kawahara, Y., Sunako, M., Tsuda, T., Fukuzaki, H., Fukumoto, Y. and Takai, Y. (1988) Angiotensin II induces expression of the c-fos gene through protein kinase C activation and calcium ion mobilization. Biochem. Biophys. Res. Comm. 150: 52-59.
Kelly, K., Cochran, B.H., Stiles, D. and Leder, P. (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35: 603-610.
Kim, S., Kawamura, M., Wanibuchi, H., Ohta, K., Hamaguchi, A., Omura, T., Yukimura, T., Miura, K. and Iwao, H. (1995) Angiotensin II type 1 receptor blockade inhibits the expression of immediate-early genes and fibronectin in rat injured artery. Circulation 92: 88-95.
Kirchheim, H.R. (1976) Systemic arterial baroreceptor reflexes. Physiol. Rev. 56: 100-176.
Konradi, C., Cole, R.L., Heckers, S. and Hyman, S.E. (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14: 5623-5634.
Konradi, C. and Heckers, S. (1995) Haloperidol-induced Fos expression in striatum is dependent upon transcription factor cyclic AMP response element binding protein. Neuroscience 65: 1051-1061
Korner, P.I. (1971) Integrative neural cardiovascular control. Physiol. Rev. 51: 312-367.
Kramar, E.A., Harding, J.W. and Wright, J.W. (1997) Angiotensin II- and IV-induced changes in cerebral blood flow roles of AT1 AT2, and AT4 receptor subtypes. Regul. Pept. 68: 131-138.
Kuo, T.B.J. and Chan, S.H.H. (1993) Continuous, on-line, real-time spectral analysis of systemic arterial pressure signals. Am. J. Physiol. 264: H2208-H2213.
Kuo, T.B.J., Shyr, M.-H. and Chan, S.H.H. (1993) Simultaneous, continuous, on-line and real-time spectral analysis of multiple physiology signals by a personal-computer-based algorithm. Biol. Signals 2: 45-56.
Kuo, T.B.J., Yang, C.C.H. and Chan, S.H.H. (1997) Selective activation of vasomotor component of SAP spectrum by broad-band stimulation of nucleus reticularis ventrolateralis in the rat. Am. J. Physiol. 272: H485-H492.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊