跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯順耀
研究生(外文):ShunYao Ke
論文名稱:口腔癌基因甲基化異常之鑑定
論文名稱(外文):Identification of DNA with abnormal methylation in oral squamous cell carcinomas using methylation sensitive restriction fingerprinting
指導教授:林姝君林姝君引用關係
指導教授(外文):ShuChun Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:59
中文關鍵詞:口腔鱗狀上皮癌甲基化甲基化限制酵素敏感性指紋鑑定
外文關鍵詞:Squamous Cell CarcinomaMethylationMethylation Sensitive Restriction Fingerprinting
相關次數:
  • 被引用被引用:1
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因甲基化異常是腫瘤細胞常見的現象,這些變異常在基因促進區﹙promoter region﹚之CpG island上發生,而造成轉錄失活或是突變。近年來一種以基因擴大術為基礎的方法,稱之為甲基化限制酵素敏感性指紋鑑定﹙全名︰Methylation-Sensitive Restriction Fingerprinting,簡稱MSRF﹚,被引用從腫瘤中分離甲基化異常的基因。在此研究使用MSRF鑑定口腔鱗狀上皮癌中甲基化異常的基因。先以在促進區罕見限制位置的限制酵素Mse I將DNA切碎,再使用對CpG island甲基化敏感之限制酵素Bst UI處理之後,將尾端帶有Bst UI切點的primer任意組序作基因擴大,目前已經找到48個有改變的DNA,其中包括3個甲基化過量、14個甲基化降低、22個刪除和9個擴大。將這些DNA片段植入質體加以純化,經讀序後和人體基因庫比對,以瞭解其為已知或是未知的基因。其中有一暫時稱為5-3之 DNA,其序列和C-terminal binding protein 2 (CtBP2)相似,進一步證明此DNA存在於正常細胞中,且可以RT-PCR的方式在部分癌細胞株測得其表現。

Abnomal DNA methylation is usually observed in tumor cells. These changes often clustered in CpG island of promoter region of genes. That results in loss of transcription or mutation. Recently, a PCR-based method, named methylation-sensitive restriction fingerprinting (MSRF) has been used to identify aberrantly DNA methylation in tumors. In this study, genes with abnormal methylation were identified in oral squemous cell carcinomas (OSCCs) using MSRF. Genomic DNA was first digested by MseI restriction enzyme because its restriction site rarely occurs in promoter region, then treated with a methylation sensitive restriction enzyme Bst UI. Used arbitrary primers to amplify DNA, forty-eight DNA changes in OSCC were found, which includes three hypermethylation, fourteen hypomethylation,twenty-two deletion and nine amplification. Subsequent sequencing and matching to database revealed the identify of these DNA. One of the DNA fragments, named 5-3, which shows high homology to C-terminal binding protein 2 (CtBP2). It was found that 5-3 DNA exists in normal genomic DNA and is expressed in several cancer cell lines.

目錄 ………………………………………………….. I
表次目錄 ……………………………………………….. II
圖次目錄 ……………………………………………….. III
中文摘要 ……………………………………………….. IV
英文摘要 ……………………………………………….. V
緒論 …………………………………………………… 1
材料與方法 …………………………………………….. 10
結果 ………………………………………………….. 21
討論 ………………………………………………….. 25
表列 ………………………………………………….. 30
圖列 ………………………………………………….. 32
參考文獻 ……………………………………………….. 48

1. Antequera F and Bird A. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA. 90: 11995-9,1993.
2. Meehan RR, Lewis JD, Mckay S, Kleiner EL and Bird AP. Identification of a mammalian protein that binds specifically to DNA containing methylated CpG. Cell. 58: 499-507,1989.
3. Craig JM and Bickmore WA. The distribution of CpG islands in mammalian chromosomes. Nat. Genet. 7: 376-82,1994.
4. Gardiner-Garden M and Frommer M. CpG islands in vertebrate genomes. J. Molec. Biol. 196: 261-82,1987.
5. Huang T H-M, Laux DE, Hamlin BC, Tran P, Tran H and Lubahn DB. Identification of DNA methylation markers for human breast carcinomas using the methylation- sensitive restriction fingerprinting technique. Cancer Res. 57: 1030-4,1997.
6. Bird AP. CpG-rich island and the function of DNA methylation. Nature. 321: 209-13,1986.
7. Jones PA. DNA methylation and cancer. Cancer Res. 46: 461-6,1986.
8. Baylin SB, Herman JG, Graff JR, Vertino PM and Issa J-P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Advances in Cancer Res. 72: 141-96, 1998.
9. Wilson GG and Manay NE. Restriction and modification systems. Annu. Rev. Genet. 25: 585-27,1991.
10. Bestor TH and Tycko B. Creation of genomic methylation patterns. Nat. Genet. 12: 363-7,1996.
11. Holliday R and Grigg GW. DNA methylation and mutation. Mutat. Res. 285: 61-7,1993.
12. Clark SJ, Harrison J and Frommer M. CpNpG methylation in mammalian cells. Nat. Genet. 10: 20-7,1995.
13. Laird PW and Jaenisch R. DNA methylation and cancer. Hum. Mol. Genet. 3: 1487-95,1994.
14. Larsen F, Gundersen G, Lopez R and Prydz H. CpG island as gene markers in the human genome. Genomics. 13: 1095-107,1992.
15. Jean-Marc Z and Peter AJ. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis. 18: 869-82,1997.
16. Nan X, Campoy FJ and Bird AP. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 88: 471-81,1997.
17. Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT and Davidson NE. Role of estrogen receptor gene demethylation and DNA methyltransferase DNA adducts formation in 5-aza-2'-deoxycytidine-induced cytotoxicity in human breast cancer cells. Biol. Chem. 272: 32260-6,1997
18. Leonhardt H, Page AW, Weier HU and Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 71: 865-73,1992.
19. Jones PA. DNA methylation errors and cancer. Cancer Res. 56: 2463-7,1996.
20. Li E, Beard C and Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 366: 362-5,1993.
21. Razin A and Kafri T. DNA methylation from embryo to adult. Prog. Nucl. Acids Res. Mol. Biol. 48: 53-81,1994.
22. Jones PA and Bukely JD. The role of DNA methylation in cancer. Adv. Cancer Res. 54: 1-23,1990.
23. Vertino PM, Yen RW, Gao Jand Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpression DNA (Cytosine-5-) methyltransferase. Mol. Cell Biol. 16: 4555-65,1996.
24. Laird PW, Jackson-Grusby L, Fazelli A, Dickinson SL, Jung WE, Li E, Weinberg RA and Jaenisch R. Suppression of intestinal neoplasia by DNA hypomethylation. Cell. 81: 197-205,1995.
25. Macleod AR and Szyf M. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J. Biol. Chem. 270: 8037-43,1995.
26. El-Deiry WS, Nelkin BD, Celano P, Yen RWC, Falco JP, Hamilton SR and Baylin SB. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl. Acad. Sci. USA. 88: 3470-4,1991.
27. Jaenisch R. DNA methylation and imprinting: why bother? Trends Genet. 13: 323-9,1997.
28. Li E, Bestor TH and Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69: 915-26, 1992.
29. Panning B and Jaeniscch R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 10: 1991-2002,1996.
30. Bird AP. Gene number, noise reduction and biological complexity. Trends Genet. 11: 94-100,1995.
31. Singer-Sam J, Grant M, LeBon JM, Okuyama K, Chapman V, Monk M and Riggs AD. Use of a HpaII-polymerase chain reaction assay to study DNA methylation in Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol. and Cell Biol. 10: 4987-9,1990.
32. Grant SG and Chapman VM. Mechanisms of X-chromosome regulation. Annual Rev. Genet. 22: 199-233,1988.
33. Riggs AD and Pfeifer GP. X-chromosome inactivation and cell memory. Trends Genet. 8: 169-74,1992.
34. Pferifer GP, Tanguay RL, Steigerwald SD and Riggs AD. In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosome DNA at the CpG island and promoter of human PGK-1. Genes Dev. 4: 1277-87,1990.
35. Herman JG, Graff JR, Myohanen S, Nelkin BD and Baylin SB. Methylation-specific PCR: A novel PCR assay for methylation starts of CpG island. Proc. Natl. Acad. Sci. USA. 93: 9821-6,1996.
36. Ferguson-Smith AC, Sasaki H, Cattanach BM and Surani MA. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362: 751-5,1993.
37. Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T and Takahahi T. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancer. Oncogene. 10: 1193-8,1995.
38. Driscoll DJ. Genomic imprinting in humans. Mol. Genet Med. 4: 37-77,1994.
39. Fundele RH and Surani MA. Experimental embryological analysis of genetic imprinting in mouse development. Dev. Genet. 15: 515-22,1994.
40. Bartolomei MS, Webber AC, Brunkow MF and Tilghman S. The search for imprinted genes. Nature Genet. 6: 220-1,1994.
41. Brannan CI, Dees EC, Ingram RS and Tilghman SM. The product of the H19 gene may function as an RNA. Mol. Cell Biol. 10: 28-36,1990.
42. Ohlsson R, Nystrom A, Pfeifer-Ohlsson S, Tohonen V, Hedborg F, Schofield P, Ham F and Ekstrom TJ. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet. 4: 94-7,1993.
43. Zhang Y and Tycko B. Monoallelic expression of the H19 gene. Nature Genet. 1: 40-4,1992.
44. Poirier F, Chan CTJ, Timmons DM, Robertson EJ, Evans MJ and Rigby PWJ. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Dev. 113: 1105-14,1991.
45. Douc-Rasy S, Barrois M, Fogel S,Ahomadegbe JC,Stehelin D, Coll J and Riou G. High incidence of loss of the heterozygosity and abnormal imprinting H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene. 12: 423-30,1996.
46. Jinno Y, Ikeda Y, Yun K, Maw M, Masuzaki H, Fukyda H, Inuzuka K, Fujishita A, Ohtain Y, Okimoto T, Ishimaru T and Niikawa N. Establishment of functional imprinting of H19 gene in human developing placentae. Nature Genet. 10: 318-24,1995.
47. Zingg J-M and Jones PA. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis. 18: 869-82,1997.
48. Shen JC, Rideout WM and Jones PA. The role of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22: 972-6,1994.
49. Stopper H, Pechan R and Schiffman D. 5-Azacytidine induces micronuclei and morphological transformation of Syrian hamster embryo fibroblasts in the absence of unscheduled DNA synthesis. Mutation Res. 283: 21-8,1992.
50. Yoder JA, Walsh CP and Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends in Genet. 13: 335-40,1997.
51. Laird PW and Jaenisch R. The role of DNA methylation in cancer genetics and epigenetics. Annual Rev. Genet. 30: 441-64,1996.
52. Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM and Jones PA. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissue correlates with gene silencing. Cancer Res. 55: 4531-5,1995.
53. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB and Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDK/MTS1 in human cancers. Nat. Med. 1: 686-92,1995.
54. Herman JG, Merlo A, Mao L, Lapidus RG, Issa J-P, Davidson NE, Sidransky D and Baylin SB. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancer. Cancer Res. 55: 4525-30,1995.
55. Yoshiura K, Kanai Y, Ochiai A, Shimcyama Y, Sugimura T and Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA. 92: 7416-9,1995.
56. Mancini MA, Shan B, Nickerson JA, Penman S and Lee WH. The retinoblastoma gene product is cell cycle-dependent nuclear matrix-associated protein. Proc. Natl. Acad. Sci. USA. 91: 418-22,1994.
57. Zrihan-Licht S, Weiss M, Keydar I and Wreschner DH. DNA methylation status of the MUC1 gene coding for a breast-cancer-associated protein. Int. J. Cancer. 62: 245-51,1995.
58. Bagwe AN, Kay PH and Spagnolo DV. Evidence that DNA methylation imbalance is not involved in the development of malignant mesothelioma. Anticancer Res. 17: 3341-4,1997.
59. Antequera F, Boyes J and Bird A. High level of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 62: 503-14,1990.
60. Jones PA, Wolkowiz MJ, Rideut III WM, Gonzales FA, Marziasz CM, Coetzee GA and Tapscott SJ. De novo methylation of the Moy D, pG island during the establishment of immortal cell lines. Proc. Natl. Acad. Sci. USA. 87: 6117-21,1990.
61. Makos M, Nelkin BD, Lerman MI, Latif F, Zbar B and Baylin SB. Distinct hypermethylation patterns occurs at altered chromosome loci in human lung and colon cancer. Proc. Natl. Acad. Sci. USA. 89: 1929-33,1992.
62. Otterson GA, Khleif SN, Chen W, oxon AB and Kaye FJ. CDK2 gene silecing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza2' deoxycytidime. Oncogene. 11: 1211-6,1995.
63. Costello JF, Berger MS, Su Huang HJ and Cavenee WK. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 56: 2405-10,1996.
64. Dardi I Canto MD, Bartdetti R and Montali E. Abnormal c-myc oncogene DNA methylation in human bladder cancer: Possible role in tumor progression. Eur. Urol. 31: 224-30,1997.
65. Makos M, Nelkin BD, Rieter RE, Gnarra JR, Brooks J, Issacs W, Linehan M and Baylin SB. Regional DNA hypermethylation at D17S5 preced 17P structural changes in the progression of renal tumors. Cancer Res. 53: 2719-22,1993.
66. Huynh L, Alpert L and Pollak M. Silencing of the mammary-derived growth inhibitor (MDGI) gene in breast neoplasms is associated with epigenetic changes. Cancer Res. 56: 4865-70,1996.
67. Issa JP, Zehnauer BA and Civin CI, Collector MI, Sharkis SJ, Davidson NE, Kaufmann SH and Baylin SB. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res. 56: 973-7,1996.
68. Lee W-H, Morton RA, Epstein JI, Brook JD, Campbell PA, Boca GS, Hsieh WS, Issacs WB and Nelson WG. Cytidine methylation of regulatory sequences near the π-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA. 91: 11733-7,1994.
69. Cravo M, Pinto R, Fidalgo P, Chaves P, Gloria L, Nobre-Leitao C and Mira F. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 39: 434-8,1996.
70. Counts JL and Goodman JI. Alteration in DNA methylation may play a variety of roles in carcinogenesis. Cell. 83: 13-5,1995.
71. Ferguson AT, Lapidus RG, Baylin SB and Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 55:2279-83,1995.
72. Vachtenheim J, Horakova I and Novotna H. Hypomethylation of CCGG sites in the 3' region of H-ras protooncogene is frequent and is associated with H-ras allele loss in non-small cell lung cancer. Cancer Res. 54: 1145-8,1994.
73. Baylin SB, Makos M and Wu J. Abnormal patterns of DNA methylation in human neoplasia: Potential consequence for tumor progression. Cancer Cell. 3: 383-90,1991.
74. Zemel S, Bartolomei MS and Tilghman SM. Physical linkage of two mammalian imprinting genes, H19 and insulin-like growth factor 2. Nature Genet. 2: 61-5,1992.
75. Mannens M, Hoovers JM, Redeker E, Verjaal M and Feinberg AP. Parental imprinting of human chromosome region 11p15.3 involved in the Beckwith-Wiedmann syndrome and various human neoplasia. Eur. J. Hum. Genet. 2: 3-23,1994.
76. Jones PA and Gonzalgo ML. Altered DNA methylation and genome instability: A new pathway to cancer? Proc. Natl. Acad. Sci. USA. 94: 2103-5,1997.
77. Rideout WM, Eversole-Cire P, Spruck CH, Hustad CM and Coetzee GA. Progressive increase in the methylation status and heterochromatinization of the myo D CpG island during oncogenic transformation. Mol. Cell. Biol. 14: 6143-52,1994.
78. Ji W, Hernandez R, Zhang X-Y, Qu G-Z, Frady A, Varela M and Ehrlich M. DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutation Res. 379: 33-41,1997.
79. Bernardino J, Roux C, Almeida A, Vogt N, Gibaud A, Gerbault-Seureau M, Magdelenat H, Bourgeois CA, Malfoy B and Dutrillaux B. DNA hypomethylation in breast cancer: An independent parameter of tumor progression? Cancer Genet Cytogenet. 97: 83-9,1997.
80. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Issacs WB, Pitha PM, Davidson NE and Baylin SB. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55: 5195-9,1995.
81. Bird A. The essentials of DNA methylation. Cell. 70: 5-8,1992.
82. 張蓮鈺,碩士論文,終末子酵素活性之表現為口腔鱗狀上皮細胞癌癌化中之早期變異,國立陽明大學口腔生物研究所,1998。
83. Jemmerson R. Shah N. Takeya M. and Fishmen WH. Characterization of the placental alkaline phosphatase-like (Nagao) isozyme on the surface of A431 human epidermoid carcinoma cells. Cancer Res. 45: 282-7,1995.
84. Wong DY. Chang KW. Chen CF. and Chang RC. Characterization of two new cell lines derived from oral cavity human squamous cell carcinomas--OC1 and OC2. Journal of oral & maxillofacial surgery. 48: 385-90,1990.
85. Boukamp P. Petrussevska RT. Breitkreutz D. Hornung J. Markham A. and Fusening NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. Journal of cell biology. 106: 761-71,1988.
86. White PS. Snol, a novel alternatively spliced isoform of the ski proto-oncogene homolog, sno. Nucleic Acids Res. 21: 4632-8,1993.
87. Boyd LA, Adam L, Pelcher LE, Mchughen A, Hirji R and Selvara G. Characterization of an Escherichia coli gene encoding betaine aldehyde dehydrogenase (BADH): structural similarity to mammalian ALDHs and plant BADH. Gene. 103: 45-52,1991.
88. Boyd JM, Subramanian T, Schaeper U, Regina ML, Bayley S and Chinnadurai G. A region in the c-terminal of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. The EMBO. Journal. 12: 469-78,1993.
89. Katsanis N and Fisher EM. A novel c-terminal binding protein (CtBP2) is closely related to CtBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics. 47: 294-9,1998.
90. Schaeper U, Subramanian T, Lim L, Boyd JM and Chinnadurai G. Interaction between a cellular protein that binds to the c-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLs motif. The Journal of Bio. Chem. 273: 8549-52,1998.
91. Nibu Y, Zhang H and Levine M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science. 280: 101-3,1998.
92. Poortinga G, Watanabe M and Parkhurst SM. Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and Hairy-mediated transcriptional repression. The EMBO. Journal. 17: 2067-78,1998.
93. Herschbach BM, Arnaud MB and Johnson AD. Transcriptional repression directed by the yeastα2 protein in vitro. Nature. 370: 309-11,1994.
94. Yu X, Wu LC, Bowcock AM, Aronheim A and Baer R. The c-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. The Journal of Bio. Chem. 273: 25388-92,1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top