跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卓志鴻
研究生(外文):Chih-Hung Cho
論文名稱:相關性資料製程能力指標之研究
論文名稱(外文):Process Capability Indices for Correlated Data
指導教授:周昭宇周昭宇引用關係
指導教授(外文):Chao-Yu Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:86
中文關鍵詞:製程能力指標相關多變量常態分配非中央卡方分配
外文關鍵詞:process capability indicescorrelationmultivariate normal distributionnon-central chi-squared distribution
相關次數:
  • 被引用被引用:9
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
統計方法的運用在工業製程管制上扮演著重要的角色,這或許和戴明的倡導有關。而其中一種頗常用的統計方法是製程能力指標分析。在很多工業製程中,製程特性的集中趨勢和變異之量化是了解產品品質的主要依據。通常製程特性的平均數和標準差是衡量製程品質的兩個主要參數。若平均數和標準差未知則以樣本平均數和樣本標準差分別估計之,從實際的觀點來看,若在一個工廠中有數以百計的品質特性要管制,而樣本平均數和樣本標準差卻都帶者單位,這意味者樣本平均數和樣本標準差並不是便利的統計量。然而在製程能力指標的計算公式中,將平均數、標準差和工程規格都一起考慮,使得製程能力指標為無單位,因此製程能力指標為量化製程狀況之簡便易懂的溝通語言。

各種製程能力指標的運用普遍存在於日本、美國和其他國家的工業界。使用製程能力指標時,一般均假設樣本裡的量測值為互相獨立,然而這個假設未必為真,或許若把樣本裡的量測值假設為多變量隨機常態向量,可能來得更接近實際狀況。本論文運用文獻中的統計模式,對下列主題進行研究:

(1) 樣本的量測值存在著相關性對製程能力指標的影響;
(2) 當樣本的量測值存在著相關性時,製程能力指標的估計程序與其抽樣特性。
ABSTRACT
Statistical techniques applied to industrial process control have been revitalized due in part to effort by Deming. One of these techniques is the analysis of process capability indices. In many industrial processes, the quantification of process location and variation is central to under standing the quality of units produced form a manufacturing process. Usually the process mean and standard deviation are two important parameters to measure the process quality. From a practical view point sample mean and sample standard deviation ,which are the general estimator for process mean and standard deviation respectively,are not unitless and sometimes are not convenient summary statistics when hundreds of characteristics in a plant or supply base are considered. In many situations, capability indices can be used to relate the process mean and standard deviation to engineering
specifications that many include unilateral or bilateral tolerances with or without a target value. The resulting indices are unitless and provide a common and easily understood language for quantifying the performance of a process.

Various process capability indices have been applied to measure the process performance in Japan, U.S.A. and the other countries. In the applications of process capability indices, it is usually assumed that there is no correlation among the measurements within a sample, i.e., the measurements within a sample are independently distributed. However, in practice this assumption may not be tenable. It would be more appropriate to assume that each sample is a realization of a multivariate normal random vector. The purposes of this project are:

(1)to investigate the effect correlation on the process capability indices, and
(2)To examine the uses of the process capability indices, along with their sampling properties and estimation procedures, when correlation within a sample exists.
目錄
頁次
中文摘要……………………………………………………………………i
英文摘要……………………………………………………………………ii
誌謝…………………………………………………………………………iii
目錄…………………………………………………………………………iv
表目錄………………………………………………………………………vi
圖目錄………………………………………………………………………viii

第一章 緒論…………………………………………………………………1
第二章 文獻回顧與探討……………………………………………………4
第三章 相關性製程能力指標Cp……………………………………………20
第四章 實例探討……………………………………………………………38
第五章 Cpk、Cpm和Cpmk的探討……………………………………………52
第六章 結論與未來研究方向………………………………………………64
參考文獻 ……………………………………………………………………66
附錄 …………………………………………………………………………69
參考文獻

[1] Alwan, L. C., (1992), “Effect of Autocorrelation on Control Chart Performance” Communications in Statistics-Theory and Method, vol.21, pp.1025-1049.
[2] Box, G. E. P. and Jenkins, G. M., (1976), Time Series Analysis, Forecasting, and Control, 2nd Ed, Holder-Day, San Francisco, Calif.
[3] Boyles, R. A., (1991), “The Taugchi Capability Index”, Journal of Quality Technology, vol.23, pp.107-126.
[4] Burr, I. W., (1969), “Control Chart for Measurements with Varying Sample Size”, Journal of Quality Technology, vol1, No.3, pp.163-167.
[5] Burr, L. R., (1976), Statistical Quality Control methods, Marcel Dekker, New York.
[6] Chan, L. K., Cheng, S. W. and Spiring, F. A., (1988), “A New Measure of Process Capability: Cpm”, Journal of Quality Technology, vol.30, pp.162-175.
[7] Chou, C. Y., (1996), “Estimating the Standard Deviation for Correlated Data”, Journal of Yunlin Institute of Technology, vol.5, No.1, pp.35-40.
[8] English, J. R. and Taylor, G. D., (1993), “Process Capability Analysis-A Robustness Study” International Journal of Production and Research, vol.31, No.7, pp.1621-1635.
[9] Gunter, B. H., (1989), “The Use and Abuse of Cpk, 2”, Quality Progress, vol.22, No.3, pp.108-109.
[10] Grant, E. L. and Leavenworth, R. S., (1996), Statistical Quality Control, 7th Ed, McGraw-Hill Company.
[11] Han, C., (1978), “On the Computation of Non-Central Chi-Squared Distributions”, Journal of Statistical Computation and Simulation, vol.6, pp.207-210.
[12] Han, C., (1979), “On the Computation of Non-Central Chi-Squared Distributions with Even Degrees of Freedom”, Journal of Statistical Computation and Simulation, vol.9, pp.25-29.
[13] Harson, M. J., (1982), Multvariate Statistical Methods, Iowa state Uninersity Press/Ames.
[14] Harris, T. J. and Ross, W. H., (1991), “Statistical Process Control Procedure for Correlated Observation”, The Canadian Journal of Chemical Engineering, vol.69, pp.48-57.
[15] Johnson, N. L. and Kotz, S., (1970), Continuos Univariate Distributions, 2nd Ed, John Wiley & Sons, Inc., New York, NY.
[16] Kane, V. E., (1986), “Process Capability Indices”, Journal of Quality Technology, vol.18, No.1, pp.41-52.
[17] Kendall, M. G., Stuart, A. and Ord, J. K., (1987), The Advanced Theory of Statistics, 1, 5th Ed, Oxford University Press, New York.
[18] Kotz, S. and Johnson, N. L., (1985), Encyclopedia of Statistical6, John Wiley & Sons, Inc., pp.276-280.
[19] Lawley, D. N., (1963), “On Testing a Set of Correlation Coefficients for Equality”, Annual Mathematics Statistic, vol. 34, pp.149-151.
[20] Montgomery, D. C. and Johnson, L. A., (1976), Forecasting and Time Series Analysis. McGraw-Hill, New York.
[21] Montgomery, D.C., (1991), Introduction to Statistical Quality, 2ndEd, John Wiley & Sons, Inc., New York.
[22] Montgomery, D. C. and Mastrangelo, C. M., (1991), “Some Statistical Process Control Method for Autocorrelation Data”, Journal of Quality Technology, vol.23, pp.179-193.
[23] Narula, S. C. and Desu, M. M., (1981), “Computation of Probability and Non-Centrality Parameter of a Non-Central Chi-Squared Distribution”, Applied Statistics, vol.30, pp.349-352.
[24] Neuhardt, J., (1987), “Effects of Correlated Sub-Samples in Statistical Process Control”, IIE Transactions, vol.19, No.20, pp.208-231.
[25] Patnaik, P. B., (1949), “The Non-Central chi-square and F Distributions and Their Applications”, Biometrika, vol.36, pp.202-222.
[26] Pearn, W. L., Kotz, S. and Johnson, N. L., (1992), “Distribution and Inferential Properties of process capability indices”, Journal of Quality Technology, vol.24, No.4, pp.216-231.
[27] Rodriguez, R. N., (1992), “Recent Developments in Process Capability Analysis”, Journal of Quality Technology, vol.24, No.4, pp.208-214.
[28] Shore, H., (1997), “Process Capability Analysis When Data are Autocorrelated ”, Quality Engineering, vol.9, No.4, pp.615-626.
[29] Sullivan, L. P., (1985), “Letters”, Quality Progress, vol.18, pp.7-8.
[30] Taguchi, G., (1986), Introduction to Quality Engineering, A Productivity Organization, Tokyo, Japan.
[31] Winer, B. J., (1971), Statistical Principles in Experimental Design, 2ndEd, MCGraw-Hill Company.
[32] Yang, K. and Hancock, W. M., (1990), “Statistical Quality Control for Correlated Samples”, International Journal of Production Research, vol.28, No.3, pp.595-608.
[33] Yourstone, S. A. and Montgomery, D. C., (1989), “A time-Series Approach to Discrete real-time Process Quality Control”, Quality and Reliability Engineering International, vol.5, pp.309-317.
[34] Yourstone, S. A. and Montgomery, D. C., (1991), “Detection of Process Upset-Sample Autocorrelation Control Chart and Group Autocorrelation Control Chart Applications”, Quality and Reliability Engineering International, vol.7, pp.133-140.
[35]張公緒, 何國偉, 錢仲侯和鄭慧英, (1996), 品質管理, 曉園出版社, 台北.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top