跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭國賢
研究生(外文):K. S. Peng
論文名稱:利用有效率的混沌調變技術於迴音及雜訊消除
論文名稱(外文):Efficient Chaotic Modulation Speech For Echo and Noise Cancellation
指導教授:蔡樹川
指導教授(外文):S. C. Tsay
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程技術研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:116
中文關鍵詞:混沌觀察器迴音雜訊
外文關鍵詞:ChaosObserverechonoise
相關次數:
  • 被引用被引用:2
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文的主旨在於提出一種新的設計非線性觀察器增益的方法,使誤差動態具有漸近穩定的特性。進而將非線性觀察器以及混沌同步的觀念,應用於混沌安全通訊系統中,以提高通信保密性,最後,將傳送的信號正確還原,即達到同步。
另外,也將非線性觀察器以及 Lorenz 混沌電路同步的觀念,應用於安全通訊系統的迴音及雜訊消除,先將發射端欲傳送的信號經混沌調變後,再驅動接收端,最後經混沌解調變,即可正確還原信號,在傳送信號的過程中,將信號的波形調變成與原始語音信號完全不同,所以具通信保密性。而且,調變後的信號對迴音及雜訊有抑制作用。並使用三種適應性濾波器(NLMS,RLS及Kalman Filter),來實現迴音及雜訊消除,並比較使用三種濾波器的消除結果。
最後,使用 Logistic map 混沌系統調變信號,作為與本論文迴音與雜訊消除之性能比較。
In this thesis, proposed a new design method of the observer gain , provided the asymptotically stable of the error dynamics . Consequently , we applied the conception of the nonlinear observer and chaotic synchronization to chaotic secure communication system to improve the secret of the communication . Recovered the transmission signal correctly , we can achieve the synchronization .
In addition , this thesis also applied the conception of nonlinear observer and Lorenz chaotic circuit synchronization to the echo and the noise cancellation of the secure communication system . We delivered the signal of transmitter to chaos modulation , driven the receiver , and passed the chaos demodulation, then we can recover signal correctly . In the transmission of the signals , we modulation the signal wave-forms and let them different from the original speech signal , so it had the secret of the communication . Furthermore , the signal after modulation can reduced the echo and noise . We used three kind of adaptive filters (NLMS, RLS and Kalman Filter) to cancel the echo and the noise, and compared the results of these three filters .
Finally , we used Logistic map chaotic system to modulate the signal for the comparison with the performance of the echo and the noise cancellation in this thesis .
第一章 緒論 1
1.1 相關文獻與研究動機 1
1.2 本論文貢獻 3
1.3 本論文架構 3
第二章 迴音消除相關理論 5
2.1 簡介 5
2.2 迴音路徑(Echo path)及迴音消除器模式(Echo canceler models 8
2.3 適應性濾波器(Adaptive Filter 11
2.3.1 Wiener Filter 11
2.3.2 LMS 和 NLMS 演算法 14
2.3.3 Kalman 濾波器 17
2.3.4 RLS(Recursive Least Square)適應性濾波器 20
第三章 混沌理論 23
3.1 混沌系統(Chaotic systems)概述 25
3.2 著名的混沌系統 27
3.3 混沌系統的同步(Synchronization of chaotic systems 32
3.4 混沌安全通訊系統(Chaotic secure communication systems 34
3.4.1 混沌切換(Chaotic Switching 35
3.4.2 混沌遮蔽(Chaotic Masking 35
3.4.3 混沌調變(Chaotic Modulation 36
3.5 調變混沌系統(Modulated chaotic systems 37
第四章 非線性觀察器於混沌同步及安全通訊系統之應用 41
4.1 系統和問題的描述以及動機 42
4.2 混沌安全系統於非線性觀察器的設計 44
4.2.1 非線性觀察器的傳統設計方法 46
4.2.2 新的設計方法於非線性觀察器 50
4.3 舉例說明及模擬結果 56
第五章 Lorenz 混沌電路應用於安全通訊系統的迴音及雜訊消除 65
5.1 Lorenz 混沌系統 65
5.1.1 以非線性觀察器為觀念的 Lorenz 混沌通訊系統 66
5.1.2 Lorenz 混沌電路於安全通訊系統的Pspice模擬 70
5.2 Lorenz 混沌電路調變應用於迴音及雜訊消除的模擬結果 80
5.2.1 Lorenz 混沌電路調變應用在迴音消除 80
5.2.2 Lorenz 混沌電路調變應用於迴音及雜訊消除 86
5.3 Logistic map 混沌電路調變應用於迴音及雜訊消除的模擬結果 95
5.3.1 Logistic map 的概述 95
5.3.2 Logistic map 混沌電路調變應用於迴音消除 95
5.3.3 Logistic map 混沌電路調變應用於迴音及雜訊消除 99
5.3.4 討論 107
第六章 結論與展望 108
6.1 結論 108
6.2 未來展望 109
[51] 黃南盛, 1998, “A Nonlinear Observer-Based Approach for Chaotic
Synchronization with Its Applications to Secure Communications via a Scalar
Signal”, 國立成功大學工程科學研究所, 碩士論文.[56] 蔡樹川, 1990, “利用線性平方法設計不定系統的強健控制器”, 國立台灣
大學電機工程研究所, 博士論文.
[1] M. M. Sondhl and A. J. Presti, 1966, “A self-Adaptive echo canceller” BSTJ, vol.
45 , pp.1851.
[2] F. K. Becker and H. Rudin, 1966,“Application of automatic transversal filters to
theproblem of echo suppression”, BSTJ, vol.45, pp1874.
[3] F. G. Suyderhound et.al., 1972 “A self-Adaptive echo canceller”, COMSAT Tech.
Rev., vol. 15 ,no.2 ,pp253.
[4] N. Demytko and K. S. English, 1977, “Echo cancellation on tim variant
circuits”,Proc. IEEE, vol 65, pp. 444-453, Mar.
[5] D. L. Duttweiler, 1980, “A single-Chip VLSI echo canceller”, BSTJ,
vol.59,no.2,pp149-160.
[6] H. Fan and W. K. Jenkins, 1988,“An investigation of an adaptive IIR Echo
canceller”,IEEE Trans. On ASSP,vol.36,no.12,pp1819-1834.
[7] J. J. Shynk, 1989, “IEEE ASSP Mag.”,vol.6 ,no.2 ,pp4-21.
[8] K. Kurosawa et al.,1985 , “Consideration on IIR type learing identification method”
, Trans. IEICE , vol.J68-b,no.11,pp1229-1232.
[9] D. G. Messerschmitt, 1984, “Echo cacellation in speech and data transmission”,
IEEE J. Sel. Areas in Commun. ,vol.SAC-2 ,no.2 ,pp.283-297.
[10] B. Friedlander , 1982 “Lattice filters for adaptive processing”, Proc. IEEE, vol.70,
no.8 , pp.829-867.
[11] J. Chao and S.Tujii ,1988, “A stable and distortion-free echo and Howing canceler”
, Proc. ICASSP ’88 ,pp. 1620-1623 .
[12] Lixia Li et al.,1996, “A new wavelet network architecture for echo cancellation”,
IEEE TENCON, pp.598-601.
[13] A. N, Birkett and R. A. Goubran., 1994, “Acoustic echo cancellation for hand-free
telephony using neural network”, IEEE,pp.249-258.
[14] A. N, Birkett and R. A. Goubran., 1995, “Acoustic echo cancellation using NLMS-
neural network”IEEE,pp.3035-3038.
[15] K. H. Mueller, 1976, “A new digital echo canceler for two-wire full-duplex data
transmission”,IEEE Trans. On Commun., vol.COM-24,no.9,pp.956-962.
[16] S. B. Weinstein,1977, “A passband data driven echo canceler for full-duplex
transmission on two-wire circuit” IEEE Trans.On Commun.,vol.COM-
25,no.7,pp.654-666.
[17] Colin F. N. Cowan and Corneliu Rusu,1998, “Novel cost function adaptation
algorithm for ech cancellation” IEEE ,pp.1501-1504.
[18] T. L. Carroll and L. M. Pecora,1991, “Synchronization in chaotic systems”,IEEE
Trans. Circuits Sys. I, vol.38, pp.453-456.
[19] L. M. Pecora and T. L. Carroll ,1992, “Synchronized chaotic signals and
systems”,Proceeding of IEEE ICASSP,vol.IV,pp.137-140.
[20] L. J. Kocarev et al., 1992, “Synchronization in chaotic systems” Int. J. Bifurcation
Chaos, vol.2, no.40,pp.709-713.
[21] H. Dedieu et al., 1993,“Chaos shift keying:Modulation and demodulation of a
chaotic carrier using self-synchronizing Chua’s circuits”IEEE Trans. Circuits Syst.
II,vol. 40, no. 10 pp. 634-642.
[22] C. W. Wu and L. O. Chua, 1993,“A simple way to synchronize chaotic system with
application to secure communication systems”,Int . J. Bifurcation Chaos,
vol.3 ,no.6,pp.1619-1627.
[23] K. S. Halle et al., 1993,“Spread spectrum communication through modulation of
chaos”,Int. J. Bifurcation Chaos,vol.3,no.2,pp.469-477.
[24] Kevin M. Cuomo, 1993, “Circuits Implementation of Synchronized Chaos with
Applications to Communications”, Physical Review Letters, Vol. 71, No. 1, pp. 65-
68, July.
[25] H. Leung and T. Lo, 1993, “Chaotic radar signal processing over the sea ”,IEEE J.
Oceanic Eng.,vol.18,pp.287-296.
[26] G. Mayer-Kress,1987, “Application of dimension algorithms to experimental
chaos ”,in Direction of chaos , B. L. Hao. Ed. Singapore: World Scientific.
[27] G. H. Bateni and C. D. McGillem, 1994, “A chaotic direct sequence spread
spectrum communication system”, IEEE Trans.commun.,vol.42,pp.1524-1527.
[28] Henry Leung and Xinping Huang, 1996, “Parameter Estimation in Chaotic Noise”,
IEEE Trans. on Signal Processing, Vol. 44, No. 10, pp. 2456-2463, October.
[29] E. J. Kostelich and T. Schreiber,1993, “Noise reduction in chaotic time series
data:A survey of common methods”, Phys. Rev. E.,vol.48,pp.1752-1783.
[30] A. I. Mees and K. Judd,1993, “Dangers of geometric filtering ”,Physica D ,
vol.68 ,pp.427-436.
[31] E. J. Kostelich and J. A. Yorke,1990, “Noise reduction:Finding the simplest
dynamical system consistent with the data”,Phys. D, vol .41,pp.183-196.
[32] S. H. Hammel,1990, “Noise reduction method for chaotic systems”,Phys. Lett. A,
vol. 148,pp.421-428.
[33] J. D. Farmer and J. J. Sidorowich,1991, “Optimal shadowing and noise
reduction , ”Phys. D, vol.47.pp373-392.
[34] Henry Leung and Jennifer Lam, 1997, “Design of Demodulator for the Chaotic
Modulation Communication System”, IEEE Trans. on Circuits and Systems,
Vol.44, No. 3, pp. 262-267, March
[35] D.R.Frey,1993,“Chaotic digital encoding:An approach to secure
communication , ”IEEE Trans. Circuits Syst. II, vol. 40 no. 10, pp.660-666.
[36] H. D. J. Abarbanel and P. S. Lindsay, 1993 , “Secure communications and unstable
periodic orbits of strange attractors, ”,IEEE Trans. Circuits Syst. II ,
vol.40,no.10,pp.643-645.
[37] A. De Angeli, et al, 1995, “Dead-Beat Chaos Synchronization in Discrete-Time
Systems”, IEEE Trans. on Circuits and Systems, Vol. 42, No. 1, pp. 54-56, January.
[38] SEKHAR RAGHAVAN, 1994, “Observer design for a class of nonlinear systems”,
Int. J. of Control, Vol. 59, No. 2, pp. 515-528.
[39] Giuseppe Grassi and Saverio Mascolo, 1997, “Nonlinear Observer Design to
Synchronize Hyperchaotic Systems via a Scalar Signal”, IEEE Trans. on Circuits
and Systems, Vol. 44, No. 10, pp. 1011-1014, October.
[40] Henk Nijmeijer, et al, 1997, “An Observer Looks at Synchronization”, IEEE Trans.
on Circuits and Systems, Vol. 44, No. 10, pp. 882-890, October.
[41] J. H. Peng, et al, 1996, “Synchronizing Hyperchaos with a Scalar Transmitted
Signal”, Physical Review Letters, Vol. 76, No. 6, pp. 904-907, February.
[42] L. Kocarev and U. Parlitz, 1995, “General Approcah for Chaotic Synchronization
with Applications to Communications”, Physical Review Letters, Vol. 74, No. 25,
pp. 5028-5031, June.
[43] T. Kapitaniak, 1994, “Synchronization of Chaos Continuous Control”, Physical
Review E, Vol. 50, No. 2, pp. 1642-1644, August.
[44] Omer Morgul and Ercan Solak, 1996, “Observer Based Synchronization of Chaotic
Systems”, Physical Review E, Vol. 54, No. 5, pp. 4803-4811, November.
[45] Kevin M. Cuomo, 1993, “Synchronization of Lorenz-Based Chaotic Circuits with
Applications to Communications”, IEEE trans. on Circuits and Systems, Vol. 40,
No. 10, pp. 626-633, October.
[46] J.M.H. Elmirghani, et al, 1994, “Echo Cancellation Strategy Using Chaotic
Modulated Speech”, ELECTRONICS LETTERS, Vol. 30, No. 18, pp. 1467-1468,
September.
[47] S.H. Milner, et al, 1995, “Efficient chaotic-driven echo path modelling”,
ELECTRONICS LETTERS, Vol. 31, No. 6, pp. 429-430, March.
[48] J.M.H. Elmirghani, et al, 1996, “Noise impaired each path modelling using chaotic
coded speech”, IEEE, pp. 2088-2092
[49] Kazuo Murano, et al, 1990, “Echo Cancellation and Applications”, IEEE
Communications Magazine, pp. 49-55, January.
[50] Bernard Widrow, Samuel D. Stearns, 1985, Adaptive Singal Processing, Prentice
Hall, Inc .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 葉明達(民88)。高一學生數學合作解題與後設認知行為之研究。中學教育學報,6,159-204。
2. 葉明達(民88)。高一學生數學合作解題與後設認知行為之研究。中學教育學報,6,159-204。
3. 葉明達(民88)。高一學生數學合作解題與後設認知行為之研究。中學教育學報,6,159-204。
4. 陳密桃(民79)。後設認知的評估方法。教育文粹,20,196-209。
5. 陳密桃(民79)。後設認知的評估方法。教育文粹,20,196-209。
6. 陳密桃(民79)。後設認知的評估方法。教育文粹,20,196-209。
7. 陳李綢(民81)。國小男女生後設認知能力與數學作業表現的關係研究。國立臺灣師範大學教育心理與輔導學系教育心理學報,25,97-109。
8. 陳李綢(民81)。國小男女生後設認知能力與數學作業表現的關係研究。國立臺灣師範大學教育心理與輔導學系教育心理學報,25,97-109。
9. 陳李綢(民81)。國小男女生後設認知能力與數學作業表現的關係研究。國立臺灣師範大學教育心理與輔導學系教育心理學報,25,97-109。
10. 張景媛(民87) 。新學習時代的來臨-建構學習的理論與實務。教育研究資訊,6(1),52-65。
11. 張景媛(民87) 。新學習時代的來臨-建構學習的理論與實務。教育研究資訊,6(1),52-65。
12. 張景媛(民87) 。新學習時代的來臨-建構學習的理論與實務。教育研究資訊,6(1),52-65。
13. 涂金堂(民88) 。後設認知理論對數學解題教學的啟示。教育研究資訊,7(1),122-137。
14. 涂金堂(民88) 。後設認知理論對數學解題教學的啟示。教育研究資訊,7(1),122-137。
15. 涂金堂(民88) 。後設認知理論對數學解題教學的啟示。教育研究資訊,7(1),122-137。