跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭貴元
研究生(外文):Kuei Yuan Cheng
論文名稱:噴霧熱分解氣膠反應器最適化研究:反應器設計對產率之影響
論文名稱(外文):Optimization of Spray Pyrolysis Aerosol Reactor:Effect of Reactor Design on Product Yield
指導教授:張幼珍
指導教授(外文):Yu Chen Chang
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:64
中文關鍵詞:噴霧熱分解反應器設計產率熱泳動套流
外文關鍵詞:spray pyrolysisreactor designproduct yieldthermophoresissheath flow
相關次數:
  • 被引用被引用:3
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在研究反應器設計與產率間的關係。研究中的理論產量係以TGA熱分析得到先趨物在實驗溫度下的重量損失率推求而得,此值可計算在反應器微粒收集器中濾紙所收集到的粉粒體產率,及器壁上因熱泳沉積及其它氣膠沉積機制造成的器壁沉積率。實驗係以已知重量的鋁箔紙貼覆在反應器各部份的內壁上,由實驗前後的鋁箔紙重量差,實際量測反應器各部位的沉積量與相對比率,來檢視各部位的沈積率,並探討沈積原因後,在反應器設計上予以改善,再進行實驗,比較改善前與改善後之產率。
實驗變數包括霧化器至預熱乾燥區以前的氣膠輸送管線的設計、反應器加溫區段管壁絕熱包覆的效果、高溫爐爐管在爐末端延伸的長度、不同的高溫爐溫度(600和800℃)、高溫爐末端熱氣膠以套流包覆來抑制熱泳沉積的效果,和不同的套流比及溫度對產率的影響。實驗結果顯示,因管件方向設計不良,霧滴的重力沈降可能造成高達30%的沈積,熱泳沈積在實驗中600℃、800℃下,在8-13%範圍。本實驗室反應器經改良後產率由改良前的50%,提昇至80%左右。

Thermophoresis was suspected to be the prime reason for the significant loss of product powders in spray pyrolysis aerosol reactors. However, there is no published experimental evidence supporting this speculation yet. To answer this question, a lab-scale spray pyrolysis reactor capable of producing 1-2 grams per hour was designed and constructed. Preliminary runs were carried out to locate where particle losses occur throughout the reactor. The results showed particle losses at locations including the transport tube section between the ultrasonic generator and the diffusion drying section, flanges connecting reactor tubes, and the transport tube between downstream of the higher temperature pyrolysis furnace and the particle collection device. Possible deposition mechanisms at each of these locations were suggested and necessary correction measures were comprehended.
Quantitative determination of particle loss was made by directly collecting particles with pre-weighted aluminum foils covered on inside walls of the reactor at each of these locations. Thermogravimetric analysis was used to determine the actual amount of powders resulted from precursor solution consumed in each run. This result allows the calculation of particle deposition at each location and actual product yield on filter. Experiments were also conducted to examine the effect of using clean sheath gas around the hot aerosol out from the furnace to suppress thermophoretic deposition. After modifications, product yield increased significantly from 50% to 80%. Thermophoresis was found no the only relevant deposition mechanism in this type of system. When the liquid spray transport tube was not properly designed, a significant loss of the liquid droplets of several microns in size due to gravitational settling or inertial impaction may result.

書名頁
論文口試委員審定書
授權書
中文摘要……………………………………………………...…………….I
英文摘要…………...…………………………………………..………….II
誌謝………………………………….……………..……………………..IV
目錄…….…………..……………………………………..……………….V
表目錄……………..….…………………………………………………VII
圖目錄……………..…………….……………………………………...VIII
符號說明………………………….……………………………………….X
第一章 緒論…………………………..……..………………………….1
第二章 文獻回顧……………………………..…………………….…..4
2.1氣膠基本沈積機制………………………………………...…….4
2.1.1重力沈降………………………………………………….4
2.1.2 擴散……………..……..…………………………………6
2.1.3 慣性衝擊………...……………………………………….8
2.1.4 熱泳動……………………………….………………….10
2.1.5 膠結………………………………….………………….13
2.2 噴霧熱分解粉粒體製程簡介.…………………………………14
2.2.1 先驅物溶液霧化………………..………………………14
2.2.2 先驅物溶液霧滴乾燥………..….…………..………….15
2.2.3 先驅物微粒裂解反應……………………….………….15
2.2.4 高溫微粒產物的冷卻輸送…………...………………...16
2.2.5 產物微粒由氣相分離…………………………………..16
2.2.6 抑制噴霧熱分解中熱泳沈積的過去研究………..……16
第三章 無塵套流抑制熱泳沉積原理………………………………….19
第四章 實驗方法……………………………………………………….23
4.1 實驗藥品及器材……………...……………………………..…23
4.2 分析儀器……………………………………………………….23
4.3 實驗系統與操作…………………………………………...…..24
4.3.1實驗系統……………………………..………………….24
4.3.2實驗方法與步驟……………………………………..….24
4.3.2.1 先趨物溶液配製………………………………25
4.3.2.2 反應器操作步驟………………………………25
4.4可視化流場之觀察……………………………………………..26
第五章 結果與討論………………………………………..………….29
5.1 先驅物熱重損失率測定及測試微粒結構、粒徑測量………..29
5.2 法蘭包覆是否妥當……………………………………………..29
5.3 霧滴輸送管線的影響…………………………………………..35
5.4 高溫爐出口處沉積的改善……...………………………40
5.5 套流對冷卻輸送段沉積現象的改善…………………………..43
5.6 可視化流場觀察無塵套流對抑制微粒沉積的定性結果……..53
第六章 結論……………………………………………..…………….58
參考文獻…………….…………………...……………………………….60
附錄A 微粒在標準狀態下(1 atm, 20℃)的性質……...……………….63
簡歷……………………………………………………………………….64

1. Messing, G. L., S.C. Zhang, and G. V. Jayanthi, “Ceramic Powder Synthesis by Spray Pyrolysis”, J. Am. Ceram. Soc., 76(11), 2707-2726 (1993).
2. Zhang, S.C., G. L. Messing, M. Borden, “Synthesis of Solid, Spherical Zirconia Particles by Spray Pyrolysis”, J. Am. Cream. Soc., 73(1), 61-67 (1990).
3. Ohshima, K., K. Tsuto, K. Okuyama, N. Tohge, "Preparation of ZnO-TiO2 Composite Fine Particles Using the Ultrasonic Spray Pyrolysis Method and Their Characteristics on Ultraviolet Cutoff," Aerosol Sci. & Technol., 19, 468-77 (1993).
4. Ishizawa, H., O. Sakurai, N. Mizutani, M. Kato, “Homogeneous Y2O3-Stabilized ZrO2 Powder by Spray Pyrolysis Method,” Am. Ceram. Soc. Bull. 65(10), 1399-1404 (1986).
5. Kodas, T .T., E. M. Engler, V.Y. Lee, R. Jacowitz, T.H. Baum, K. Roche, and S.S.P. Parkin, W.S. Young, Hughes, J. Kleder, and W. Auser, “Aerosol Flow Reactor Production of Fine YBa2Cu4O7 Powder: Fabrication of Superconducting Ceramics, ” Appl. Phys. Lett, 52(19), 1622-24 (1988).
6. Bickmore, C. R., K. F. Waldner, D. R. Treadwell, and R. M. Laine, “Ultrafine Spinel Powders by Flame Spray Pyrolysis of a Magnesium Aluminum Double Alkoxide,” J. Am. Ceram. Soc., 79(5), 1419-23 (1996).
7. Fuchs, N. A., The Mechanics of Aerosols, Pergamon Press, Oxford (1964).
8. Thomas, J.W., J. Air Pollut. Control Ass, 8, 32 (1958).
9. Pich, J., "Theory of Gravitational Deposition of Particles From Laminar Flows in Channels," J. Aerosol Sci., 3, 351-61 (1972).
10. Hidy, G.M. and J. R. Brock, The Dynamics of Aerocolloidal Systems, Pergamon Press, Oxford (1970).
11. 陳時欣,"氣膠懸浮系統之沉降及熱泳運動",化工,45(2),28-38頁,民國87年。
12. Walker, K.L., G.M. Homsy, and F.T. Geyling, "Thermophoretic Deposition of Small Particles in Laminar Tube Flow," J. of Colloid and Interf. Sci., 69(1), 138-47 (1979).
13. Pratsinis, S.E. and K.S. Kim, "Particle Coagulation, Diffusion and Thermophoresis in Laminar Tube Flows," J. Aerosol Sci., 20(1), 101-11 (1989).
14. Chang, Y.C., M. B. Ranade, and J. W. Gentry, "Thermophoretic Deposition in Flow Along an Annular Cross-Section: Experiment and Simulation," J. Aerosol Sci., 26(3), 407-28 (1995).
15. Lin, S.H., "Particle Deposition Due to Thermal Force in a Tube," Appl. Sci. Res., 32, 637-48 (1976).
16. Stratmann, F. and H. Fissan, "Experimental and theoretical study of submicron particle transport in cooled laminar tube flow due to combined convection, diffusion, and thermophoresis," J. Aerosol Sci., 20, 899-902 (1989).
17. Hinds, W.C., Aerosol Technology, John Wiley & Sons, New York (1982).
18. Zhang, S.C., G. Mulholland, and G. L. Messing, "Synthesis of ZrO2 Nanoparticles by Spray Pyrolysis," Journal of Materials Synthesis and Processing, 4(4), 227-33 (1996).
19. Senzaki, Y., J. Caruso, M. J. Hampden-Smith, T. T. Kodas, and L.M. Wang, “Preparation of Strontium Ferrite Particles by Spray Pyrolysis,” J. Am. Ceram. Soc., 78(11), 2973-76 (1995).
20. Liu, T. Q., O. Sakurai, N. Mizutani, M. Kato, "Preparation of Spherical fine ZnO Particles by the Spray Pyrolysis Method using Ultrasonic Atomization Techniques," J. of Material Sci., 21, 3698-3702 (1986).
21. Nguyen, H.V. and R. C. Flagan," Particles formation and growth in single-stage aerosol reactors," Langmuir, 7, 1807-14 (1991).
22. Weimer, A.W., G. A. Cochran, G. A. Eisman, J. P. Heniey, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, "Controlling Thermophoresis in The Exothermic Nitridation of An Aluminum Aerosol," Aerosol Sci.& Technol., 19(4), 491-98 (1993).
23. Tarr, M. A., G. Zhu, and R. F. Browner, "Fundamental Aerosol Studies with An Ultrasonic Nebulizer," Applied Spectroscopy, 45(9), 1424-32 (1991).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top