跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘煥亞
論文名稱:脫殼彈與光膛砲管間交互作用之動態分析
指導教授:陳幼良
學位類別:碩士
校院名稱:中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:75
中文關鍵詞:振動運動力尤拉-白努利樑模態
外文關鍵詞:vibrationmoving forceEuler-Bernoulli beammodal
相關次數:
  • 被引用被引用:1
  • 點閱點閱:497
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
火砲射擊時彈丸和砲管的交互作用會造成砲管側向位移並因而導致彈丸出砲口時側向偏移,同時也造成彈丸外彈道的不良影響,而其結果將導致射擊精度的降低。考慮彈丸在砲管中的運動過程,彈丸/砲管交互作用之動態分析著眼於彈丸出砲口瞬間砲口的位移。因此,真實的預測彈丸對砲管側向運動的影響而對全砲系統進行動態分析是有必要的。
本文以尤拉樑方程式建立均勻砲管側向運動的模型並用彈性支撐來模擬砲管座,支撐端模擬成有側向與扭轉位移,砲管受力來源主要為運動彈丸之重力、慣性力及砲管/彈丸交互作用時彈殼產生之彈簧力。運用Vallier-Heydenreich表解法可計算出膛壓曲線並獲得彈丸位移曲線。以消去法將彈丸/砲管的耦合運動方程式簡化成一微分方程式,藉由電腦程式的建立可計算出彈丸/砲管交互作用的動態行為。經過分析後,我們可以得到以下幾點結論是有利於火砲射擊時振動之抑制:(1)增加彈丸運動速度(2)增加支撐端側向及扭轉彈簧勁度(3)增加砲管厚度(4)降低彈丸(殼)勁度。

While firing a gunshot, the yawing motion of the gun tube made by the projectile/gun tube interaction leads to yaw of the projectile at exit. This results in improper exterior ballistic free fright of the projectile and the resultant inaccuracy of the shot. The most critical point considering the projectile/gun tube dynamic behavior during a projectile’s travel within gun tube occurs at the instant of shot ejection. Therefore, a realistic prediction of the yawing motion of the projectile/gun tube is necessary when doing the gun tube system dynamic analysis.
The Euler beam equation model of a uniform gun tube is solved with elastic supports, which simulated the tube mount. Both transverse and rotational displacements of the supports are permitted. The beam loadings account for the moving projectile’s gravity force, inertial force and the sabot’s stiffness force. The Vallier-Hendereich method is introduced to calculate the chamber pressure curve and the projectile motion curve is obtained afterwards. The equations of motion for the projectile/gun tube system are coupled. The solution to these equations can be obtained by elimination method. A computer program was established to calculate the projectile/gun tube dynamic response. After the analysis, several conclusions, which are good for control the vibrations of the gunfire, were obtained: (1)to increase the velocity of the projectile; (2)to increase the transverse and rotational spring stiffness; (3)to increase thickness of the tube and (4)to decrease the sabot stiffness.

1. 緒論 1
1.1. 研究背景 1
1.2. 研究方法及目的 4
1.3. 文獻回顧 5
1.4. 論文大綱 6
2. 砲管的數學模型及解析方法 8
2.1. 砲管之統御方程式推導 8
2.1.1. 均勻樑運動方程式 9
2.1.2. 砲管自由振動 11
2.1.3. 模態振動的正交性 12
2.1.4. 砲管強制振動 13
2.2. 砲管的邊界條件設定 15
2.3. 模態驗證 17
2.3.1. 特徵方程式 17
2.3.2. 模態函數 18
3. 彈丸模型及內彈道運動方程式 23
3.1. 彈丸模型 23
3.2. 內彈道推導 24
3.2.1. Vallier-Heydenreich表解法 24
3.2.2. 砲管/彈丸彈道曲線 26
4. 運動方程式之建立 32
4.1. 砲管/彈丸統御方程式 32
4.2. 程式驗證 37
4.2.1. 簡支樑動態與靜態撓動比 37
4.2.2. 懸臂樑動態與靜態撓動比 39
5. 動態響應模擬與模型驗證 43
5.1. 砲管受等速運動之外力作用 44
5.2. 砲管受加速運動之外力作用 45
5.3. 砲管受移動重力、慣性力之交互作用 46
5.4. 砲管與脫殼彈交互作用 47
5.5. 結論 47
6. 不同參數的動態響應分析 55
6.1. 不同邊界條件之砲口端/彈丸位移變化 55
6.2. 不同厚度砲管之砲口端/彈丸位移變化 55
6.3. 不同勁度彈丸之砲口端/彈丸位移變化 56
6.4. 結論 57
7. 結論與建議 62
7.1. 結論 62
7.2. 建議 63
參 考 文 獻 65
附錄A. 樑之撓度曲線方程式 67
A.1. 彎曲公式推導 68
A.2. 撓度曲線微分方程式推導 69
附錄B. 砲管頻率方程式的 值 72
自 傳 75

1. Rabern, D. A., “Numerical Simulations of Gun Launched Kinetic Energy Projectiles Subjected to Asymmetric Projectile Base Pressure” P.455-457 Int. J. Impact Engng Vol. 12. No.3 (1992).
2. Stephen, W., Morris, B., and Li, T., “A Modal Survey of the M1A1 Main Weapon System” U.S. Army Research Laboratory.
3. Powell, “A simple Theoretical Model of Shot/Barrel Interaction Within A smooth Bore Gun” U.S. army symposium on gun dynamics vol. II (1985).
4. David, A. H., ”Modeling Gun Dynamics with 3D Beam Elements” U.S. Army Ballistic Research Laboratory.
5. Ansari, K. A. and Baugh J. W., “Dynamics of a Balloting Projectile in a Moving Gun Tube” U.S. Army Ballistic Research Laboratory.
6. Kietzman, J. and Deaver, D.,“Simulation of Tank Cannon Launch Dynamics”.
7. Ferdinand, P. B. and Johnston, E. R.,“Vector Mechanics for Engineers Dynamics”Fourth Edition P. 850, (1984).
8. Allen, R. H., “Dynamic Responses of Kinetic Energy Projectile under Transverse Loadings” Int. J. Impact Engng Vol. 16. No. 1. P.119-132, (1995).
9. 秦嘉誠,“以模態疊加法分析砲管/彈丸交互作用之動態行為”,中正理工學院兵研所廿九期碩士論文, (1999).
10. 王世典,“樑的振動分析”,中正理工學院機研所七期碩士論文, (1977).
11. Pjerdreauvile, F. J.,“Analysis of the Lateral Motion of an Unbalanced Projectile in an Elastic Gun Tube”, Sandia Laboratories P.17-23, (1974).
12. Smith, J. W.,“Vibration of Structures Applications in Civil Engineering Design”Chapman and Hall Ltd. (1988).
13. John, M. B.,“Introduction to Structural Dynamics”McGraw-Hill, Inc. (1972).
14. 王亞平、李國榮、康淵,“材料力學”文京圖書有限公司, (1987).
15. 聯勤,“輕兵器設計技術手冊---膛內彈道解法”,P.22-27.
16. Tse, F. S., Morse, I. E. and Hinkle, R. T.,“Mechanical Vibrations Theory and Applications”2nd edition P.276-278, Allyn and Bacon, Inc.
17. Sneck, H. H. and Gast, R.,“Normal Mode Analysis of Gun Tube Dynamics,”Proceedings 4th P.47, U.S. Army Symposium on Gun Dynamics.
18. William, T. T.,“Theory of Vibration with Applications”4th edition (1993).
19. Thomas, E. S.,“The Influence of Transient Flexural Wave on Dynamic Strains in Gun Tube”.
20. Lindfield, G. and Penny, J.,“Numerical Methods Using Matlab”P.127, Ellis Horwood Limited (1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊