跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭文惠
研究生(外文):Cheng Wen-Hui
論文名稱:船舶動態聲學定位系統之研究
論文名稱(外文):A STUDY OF DYNAMIC ACOUSTIC POSITIONING SYSTEM OF VESSELS
指導教授:梁卓中梁卓中引用關係
指導教授(外文):Liang Cho-Chung
學位類別:博士
校院名稱:中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:100
中文關鍵詞:感測系統控制系統推力系統定位系統短基線系統長基線系統聲學最佳化
外文關鍵詞:Sensor systemControl systemThrust systemPositioning systemShort Base line systemLong Base ling systemAcousticOptimum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
海域工作船及水下載具在海中執行任務,為維持本身在既定位置工作或在定向運動,均設有動態定位系統協助完成工作任務。但此系統有聲學及感測器測量之誤差問題存在,會影響精確度。本論文乃針對其缺失進行研究改進,以建立精確之船舶動態定位系統。
本論文首先建立船舶動態定位系統模式,然後再針對動態定位系統各子系統(聲學感測系統、控制系統、推力系統等三個子系統)之缺失予以改善。就聲學感測系統而言,因有海洋環境隨時變化之誤差問題,故本論文利用幾何原理修正聲學感測系統(長、短基線定位系統)之誤差;控制系統因使用較多之速度及加速度等感測器,容易造成誤差之累積問題,本論文採用功原理及衝量-動量原理建立WIM控制系統(Work and Impulse-Momentum principles,WIM),以減少速度及加速度等感測器之累積誤差;就推力系統而言,推力器之推力分佈配,一般係以力平衡式解推力系統來求出,此種方式有時會求出超出推力器之額定量,故本論文將各推力器輸出推力和減去所需推力為最小為目標函數,使用序列二次規劃法(Constrained Sequential Quadratic Programming, SQP)算出推力器之最佳方向角與推力分配,
本論文所建立之改善方法,分別應用海洋大學水中迴響實驗室進行聲學感測系統實驗,及以 R-35半浮式平台之定位為對象,使用LQG及Adaptive控制系統與本文所建立之WIM控制系統進行比較與驗證,結果均顯示應用本論文所建立之改善方法可提高動態聲學定位系統之準確度;最後,以17,500噸鑽孔工作船於海上實施定點定位水下作業與2.5噸潛體潛航定位為例,進行船舶動態聲學定位系統分析,以顯示本系統具有相當之實用性與準確性,應對水下技術之發展有所助益。
The exploration of oceans and development of offshore industries through coring, drilling, pipelaying and ocean observation have been making increasing use of dynamic positioning (DP) systems for vessels in waves, wind and current environments. The DP systems usually include the following subsystems as acoustic positioning system, control system, thrust and power system. Generally, a dynamically positioned vessel with DP systems will produce thrust to counteract the environment forces acting on it for the purpose of maintaining the position and heading as closely as required to some desired position. However, the DP systems usually make errors due to the inaccuracy of sensors and the unexpected underwater sound speed. Therefore, this work presents a method to improve it and raise its accuracy.
In earlier days, the dynamic positioning of offshore vessel used the sensor system, such as Short baseline system ( SBL ) and Long baseline system ( LBL ), to estimate the relative position of vessel with respect to the seabed sensor. Unfortunately, its accuracy of sensor system is less and much difficult to hold according to uncertain and complex sound speed which is a function of temperature, salinity and depth. This paper then presents a corrected mode, which use Euclidean geometry, adding to the SBL and LBL for a precise position on surface vessels and submersible vehicles.
The conventional control system uses many sensors, such as acceleration sensors, velocity sensors, environment sensors, and filters in estimating the thrust. Those sensors are too many and may have electric errors. To reduce the quantity of sensors and decrease the errors, we develop a Work and Impulse-Momentum principles (WIM) control system, which is based upon Work and Impulse-Moment principles, to estimate thrust and moment commands.
The purpose of the thrust system is to maintain the vessel within a given distance of a desired position in the thrust-producing mechanism as quickly and accurately as possible. It usually assumes the angles of some specific azimuth thrusters are fixed, and all the thrust contributes equally to deliver the required force in one direction. However, there would be generated a counter moment, which may not satisfy the required moment according to the above assumption. Therefore, this work presents an optimum thrust control system; thus term constrained sequential quadratic programming (SQP) which can automatically adjust the azimuth thrust angles and thrust to reduce the wear and tear, minimize the required thrust and power, and allow the enabling and disabling of thrusters.
This work performed experiments to verify the accuracy of the correct mode of SBL system. And, Donha & Brinati’s example is followed to verify the feasibility of the WIM control system, which performed semi-submersible platform positioning using the LQG and Adaptive controller, and the results are feasible and economical. Furthermore, Simulation of a 17,500 tons coring vessel positioning and a 2.5 tons explorative submersible vehicle navigating in a southern Taiwan shallow ocean region has shown that the dynamic acoustic positioning system can provide good positioning. The results provide highly accuracy and valuable contribution for the dynamic acoustic positioning of offshore vessels.
封面
目錄
表錄
圖錄
符號說明
1前言
2.船舶動態聲學定位 系 統理論基礎
2.1.聲學感測系統
2.1.1.理論基礎
2.1.2.驗證
2.2.控制系統
2.2.1.理論基礎
2.2.2.驗證
2.3.推力系統
2.3.1.理論基礎
3.船舶動 態聲學定點定位系統模擬
3.1問題描述
3.2系統佈置
3.3.環境條件
3.4系統模擬分析
4.潛體潛航定住系統模擬
4.1問題描述
4.2系統佈置
4.3.環境條件
4.4系統模擬分析
5.結論與建議
參考文獻
自傳
博士修業期間論文發表
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top