跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱建強
研究生(外文):Jiann-Chyang Chiu
論文名稱:ImplementingMarkovChainMonteCarloinEconometrics
論文名稱(外文):Implementing Markov Chain Monte Carlo in Econometrics
指導教授:陳美源陳美源引用關係
指導教授(外文):Mei-Yuan Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:國際經濟研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:47
中文關鍵詞:Markov ChainMonte CarloBayesianGibbs samplingdata augmentationMetropolisHastingssampling
外文關鍵詞:Markov ChainMonte CarloBayesianGibbs samplingdata augmentationMetropolisHastingssampling
相關次數:
  • 被引用被引用:2
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
Markov chain Monte Carlo (MCMC) methods are extremely popular tools
in econometrics. Both of Bayesians and frequentists may find this method
useful. We review the Bayesian foundation for deriving the posterior condi-tionals.
Then we discuss several sampling algorithms, especially in Metropolis—
Hastings algorithm and Gibbs sampling algorithm, and properties of the Markov
chain. For constructing a complete concept of MCMC method, we use several
important econometric models to illustrate the implementing of the MCMC
method. We discuss also the implementing issue on sampling from a specified
distribution, the dependency between the drawing samples and choosing the
number of burn-in.
Markov chain Monte Carlo (MCMC) methods are extremely popular tools
in econometrics. Both of Bayesians and frequentists may find this method
useful. We review the Bayesian foundation for deriving the posterior condi-tionals.
Then we discuss several sampling algorithms, especially in Metropolis—
Hastings algorithm and Gibbs sampling algorithm, and properties of the Markov
chain. For constructing a complete concept of MCMC method, we use several
important econometric models to illustrate the implementing of the MCMC
method. We discuss also the implementing issue on sampling from a specified
distribution, the dependency between the drawing samples and choosing the
number of burn-in.
1 Introduction 1
2 Bayesian Foundation 4
2.1 Classical Linear Regression Model with Known ˙ 2 . . . . . . . . 5
2.2 Classical Linear Regression Model with Unknown ˙ 2 . . . . . . 7
2.3 Linear Regression Model with Known . . . . . . . . . . . . . 8
3 Markov Chain Monte Carlo 12
3.1 The Inverse Transform Method . . . . . . . . . . . . . . . . . . 12
3.2 The Acceptance—Rejection Method . . . . . . . . . . . . . . . . 14
3.3 Markov Chain Monte Carlo Method . . . . . . . . . . . . . . . . 17
3.3.1 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . . 21
3.5 Gibbs Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . 23
4 Applications 25
4.1 Unobserved or Missing Data . . . . . . . . . . . . . . . . . . . . 26
4.2 Nuisance Parameters . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Tips for Implementing . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Multivariate Normal . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Inverse Gamma . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Truncated Normal . . . . . . . . . . . . . . . . . . . . . 35
4.3.4 How to Choose the number of burn-in no . . . . . . . . . 36
5 Conclusions and Suggestions 37
References 36
Albert, J. and S. Chib (1993), “Bayes Inference via Gibbs Sampling of Autore-gressive
Time Series Subject to Markov Mean and Variance Shifts,”
Journal of Business and Economic Statistics, 11, 1-15.
Andrew, Gelman; John B. Carlin; Hal S. Stern and Donald B. Rubin (1995),
Bayesian Data Analysis. London: Chapman & Hall.
Bauwens, L., and M. Lubrano (1998), “Bayesian inference on GARCH models
using the Gibbs sampler,” Econometrics Journal, Volumn 1, pp.
C23-C46.
Casella, G., and E. George (1992), “Explaining the Gibbs Sampler,” The
American Statistician, 46, 167-174.
Chib, S. (1992), “Bayes inference in the Tobit censored regression model,”
Journal of Econometrics, Vol.51, 79-99.
Chib, S. (1993), “Bayes regression with autogressive errors,” Journal of Econo-metrics,
Vol.58, 275-294.
Chib, S., and E. Greenberg (1995), “Understanding the Metropolis—Hastings
Algorithm ,” The American Statistician, Vol. 49, No.4, 327-325.
Chib, S., and E. Greenberg (1996), “Markov Chain Monte Carlo Simulation
Methods in Econometrics,” Econometric Theory, 12, 409-431.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top