跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉維鈞
研究生(外文):Wei Jean Liu
論文名稱:CMOS光電二極體之特性研究
論文名稱(外文):A Study of CMOS Photodiode
指導教授:陳自強陳自強引用關係
指導教授(外文):Oscal T. -C. Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:49
中文關鍵詞:CMOS影像擷取器光電轉換元件連續方程式
外文關鍵詞:COS image sensorphoto-electronic conversion devicecontinuity equations
相關次數:
  • 被引用被引用:2
  • 點閱點閱:616
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,在工業界與學術界的努力之下,CMOS(Complementary Metal Oxide Semiconductor)製程的尺寸愈來愈小,電路架構以及電氣特性也愈來愈好,使得利用CMOS所設計之影像擷取單元已能提供一定品質與解析度的影像,再加上與系統高度整合性、低功率消耗且低製作成本的特點,明顯地,CMOS即將成為新一代的影像擷取技術。在CMOS影像擷取器中,CMOS光電二極體扮演了一個最重要的光電轉換元件之角色,因為二極體的感光特性控制著影像品質的最重要角色,本論文之目的即為探討CMOS光電二極體之特性。
在本篇論文中,利用了連續方程式的觀念,提出CMOS光電二極體模型的推導方法,這種方法同時也適用於各種結構設計的CMOS光電二極體。在驗證這個模型的過程上,我們利用TSMC(Taiwan Semiconductor Manufactory Company)所提供的1P3M(Single Poly Triple Metal) 0.6um CMOS Twin-tub製程,設計了數種不同感光接面的光電二極體,並針對各種二極體做了各方面光電特性的量測。量測結果除了用來驗證此模型的正確性之外,並比較了量測及模擬之間的差異處,搭配在推導模型過程中所用到的物理觀念,找出造成此種差異的原因,以使誤差值達到最小,使此模型達到最佳的精確度。這個模型的觀念,將可應用於未來設計各種CMOS光電二極體時,感光特性的模擬。
The CMOS process has increasingly becoming the mainstay in the IC market due to advantages of its low-power dissipation and high-density integration. Its applications of the image sensor will also be more prevalent as photo-electronics becomes one of the enabling technologies that we cannot do without. In an image sensor system, the photodiode play the most importanr role of the photo-electronic conversion device. This paper will conduct a complete analysis, simulation and measurement of the sensor characteristics of the CMOS photodiode. First, the physic characteristics of the semiconductor will be analyzed. With continuity equations and adequate boundary conditions, a CMOS photodiode model useful in any architecture design will be derived. Next the 1P3M CMOS 0.6 m process provided by the TSMC is used to design photodiodes with three different types of Nwell-Psubstrate, Ndiffusion-Pwell-Psubstrate and Pdiffusion-Nwell-Psubstrate. Measurements are then done to test their responses to various photo-electronic characteristics. Lastly, the results from measurement and simulation are compared and analyzed. By using the curve mapping scheme to find the adequate boundary condition with the least mean squared error, the proposed model would be able to achieve an optimized performance.The concept of this proposed model can be utilized in designing any CMOS photodiode for simulating its photo-electronic characteristics in various industrial applications.
第一章簡介 ……………………………………………….1
第二章CMOS光電二極體的物理特性分析 …………….5
2.1 光電流的產生……………………………………………5
2.2 光電流公式的推導………………………………………7
2.3 CMOS光電二極體模型之模擬與分析…………………16
第三章 量測環境建立與晶片的量測………………………….24
3.1量測環境建立…………………………………………….24
3.2 晶片量測結果……………………………………………28
第四章 量測與模擬結果之比較與分析……………………….37
4.1量測與模擬結果之比較與分析………………………….37
4.2 結論與比較………………………………………………45
第五章 結果與討論……………………………………………….46
參考文獻 …………………………………………….…….47
[1]E. R. Fussum, “CMOS image sensor: electronic camera on a chip,” Tech. Dig. of IEEE International Electron Devices Meeting, pp. 17-25, Dec. 1995.
[2]G. P. Weckler, “Operation of p-n juction photodetectors in a photon flux interation mode,” IEEE Journal of Solid-State Circuits, vol. SC-2, pp. 65-73 (1967).
[3]R. Dyck and G. P. Weckler, “Integrated arrays of silicon photodetectors for image sensing,” IEEE Trans. On Electron Devices, vol. ED-15(4), pp. 196-201 (1968).
[4]F. Andoh et al., “A 250,000 pixel image sensor with FET amplification at each pixel for high speed television cameras,” Tech. Dig. of IEEE International Solid-State Circuits Conference, pp. 212-213, 1990.
[5]H. Kawashima et al., “A 1/4 inch format 250,000 pixel amplifier MOS image sensor using CMOS process,” Tech. Dig. of IEEE International Electron Devices Meeting, pp. 575-578, 1993.
[6]M. Sugawara et al., “An amplified MOS imager suited for image processing,” Tech. Dig. of IEEE International Solid-State Circuits Conference, pp. 228-229, 1994.
[7]E. Oba et al., “A 1/4 inch 330k square pixel progressive scan CMOS active pixel image sensor,” Tech. Dig. of IEEE International Solid-State Circuits Conference, pp. 180-181, 1997.
[8]R. H. Nixon et al., “128 X 128 CMOS photodiode-type active pixel sensor with on-chip timing, control and signal chain electronics,” in Charge Coupled Devices and Solid-State Optical Sensor V, Proc. SPIE, vol. 2415, pp. 117-123, 1995.
[9]O. Y. Pecht et al., “A random access photodiode array for intelligent image capture,” IEEE Trans. On Electron Devices, vol. 38, pp.1772-1780, 1991.
[10]S. Mendis and etc., “A 128 X 128 CMOS active pixel image sensor for highly integrated imaging system,” Tech. Dig. of IEEE International Electron Devices Meeting, pp. 583-586, 1993.
[11]S. Mendis et al., “CMOS active pixel image sensor,” IEEE Trans. Electron Devices, vol. 41(3), pp.452-453, 1994.
[12]R. H. Nixon et al., “256 X 256 CMOS active pixel sensor Camera-on-a-chip,” IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp. 2046-2050, Dec. 1996.
[13]S. Mendis and etc., “CMOS active pixel image sensor for highly integrated imaging system,” IEEE Journal of Solid-State Circuits, vol. 32, no. 2, pp. 187-197, Feb. 1997.
[14]O. Y. Pecht et al., “A 128 X 128 pixel standard CMOS image sensor with electronic shutter,” IEEE Journal of Solid-State Circuits, vol. SC-31(12), pp. 1922-1930, 1996.
[15]O. Y. Pecht et al., “CMOS active sensor star tracker with regional electronic shutter,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 285-288, 1997.
[16]R. D. McGrath et al., “Current-mediated, current -reset 768 X 512 active pixel sensor array,” Tech. Dig. of IEEE International Solid-State Circuits Conference, pp. 182-183, San Francisco, Feb. 1997.
[17]B. Ackland and A. Dickinson, “Camera on chip,” Proc. of IEEE International Solid-State Circuits Conference, pp. 22-23, 1996.
[18]Eric R. Fossum, “CMOS image sensors : electronic-on-a-chip” IEEE Transactions on Electron Devices, VOL. 44, NO. 10, Oct. 1997
[19]Eric R. Fossum, “Digital camera system an a chip” IEEE Micro, VOL. 44, NO. 10, Oct. 1997, VOL. 18, pp. 8-15, May-June 1998
[20]J. Reginald and K. Arora, ”Using PSPICE to simulate the photoresponse of ideal CMOS integrated circuit photodiodes,” Proc. of IEEE Southeastcon Bringing Together Education, Science and Technology, pp. 374 —380, 1996.
[21]D. Schroder., Semiconductor Material and Device Characterization, New York: John Wiley and Sons, Inc., 1990.
[22]M. Tyagi, Introduction to Semiconductor Materials and Devices, New York: John Wiley and Sons, Inc., 1991.
[23]S. Sze, Semiconductor Devices, Physics and Technology, New York: John Wiley and Sons, Inc., 1985.
[24]S. Sze, Physics of Semiconductor Devices, New York: John Wiley and Sons, Inc., 1980.
[25]Zhu, Q.; Lule, T.; Stiebig, H.; Martin, T.; Giehl, J.; Zhou, J.; Fischer, H.; Bohm, M., “Color array in tfa technology”, Proc. of Solid-State and Integrated Circuit Technology, 1995 4th International Conference, pp.727-729, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top