跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴信能
研究生(外文):Peter Die
論文名稱:永磁式線性伺服馬達控制與磁路之整合最佳化設計
論文名稱(外文):Integrated Control and Motor Design of PMLSM Servo Drive
指導教授:鄭榮偉
指導教授(外文):John Cheng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:55
中文關鍵詞:線性馬達頓動力最佳化設計
外文關鍵詞:Linear MotorCogging
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
頓動力的最小化是線性馬達設計的基本問題。本研究重點以兩種方法作線性馬達最佳化設計:(1)針對雙側式永磁線性同步馬達(PMLSM)作頓動力最小化設計並保持一定的推力水準。透過多變數限制最佳化,我們分析不同設計變數對降低頓動力的影響,結合有限元素分析(FEM)軟體及最佳化法則作多變數最佳化設計。在最佳化的問題中,運用了〝類似〞多層次最佳化法則,將四個設計變數分為兩類:一為改變雙側式對稱結構的設計變數,另一類則非改變對稱結構的設計變數。在完成最佳化程序後,獲得一設計規格符合不失推力水準下使得頓動力最小化;(2)結合磁路結構設計與控制補償頓動力使推力漣波最小化。我們嘗試著發展〝控制與磁路結構之整合最佳化設計〞,以輸入電流及動子齒槽傾斜係數為設計變數求解推力、頓動力之解析解及最佳值以改善頓動力(針對動子齒槽部分頓動力)。採用Closed Form法則作整合最佳化設計,將最佳解以求解線性方程組的模式求出,其目的在於求得一組設計變數使得推力輸出漣波最小化且推力輸出能保持定值。
Cogging force minimization has been the primary design concern for linear motors. This thesis provide two approaches for Permanent Magnet Linear Synchronous Motors (PMLSMs) optimization: (1) On the optimal design of PMLSMs aimed at minimizing the cogging force with least loss in the motor thrust capacity. Particularly, the double-sided PMLSM is considered. The stated design objective is achieved by exploiting the double-sided configuration and through multi-variable constrained optimization. A physical insight into the benefit of the double-sided design on cogging force minimization is analyzed and confirmed using FEM analysis. The optimization is carried out by combining a commercial electromagnetic FEM package with selected optimization algorithm. Specifically, a ''pseudo'' multi-level optimization approach is proposed. Four design variables are considered and classified into two types. One consists of variables particularly associated with the double-sided configuration and the other is made up of those not specifically related to the double-sided design. The proposed optimization approach is successfully applied to a generic double-sided PMLSM. (2) The other approach is integrated control current and motors structure design, we hope to compensate the cogging force and minimize the thrust force ripple. To develop a analytical expression of the thrust force and the cogging force and their optimization solution which involves design variables of current control and slot skew ratio. The integrated optimization approach is closed form method which formulate the optimization problem into linear algebra. We hope to find a solution set that minimize the force ripple and maintain the thrust force.
摘要………………………………………………………………………I
目錄…………………………………….………………………….….…II
圖目錄…………………………………………………………………..III
表目錄…………………………………………………………………..IV
第一章 緒論…………………………………………………...……….3
1-1 線性馬達之邊端效應與齒槽效應………………………….….3
1-2 研究動機與目的…………………………………….………….6
1-3 文獻回顧………………………………………………………..9
1-4 論文貢獻及架構………………………………………………10
第二章 磁路最佳化設計……………………………………………..10
2-1 最佳化問題模式………………………….….……………….12
2-2 並設計變數對頓動力之影響………………………….…….16
2-3 多變數限制頓動力最小化…………………………………...22
2-4 最佳化結果與討論………………………………………….. 25
第三章 磁路與控制之整合最佳化設計……………..………………30
3-1 馬達輸出推力之推導原理 …..…………………………...31
3-2 逆電動勢與頓動力解析方程式之推導……….……………..33
3-3 磁路與控制之整合最佳化設計…………………………….. 39
第四章 結論與未來研究方向……………………………………..…47
4-1 結論…….……………………………………………..………47
4-2 未來研究方向……………………………………..……48
參考文獻…………………………………………………………..……49
附錄
[1] Guangyu Xiong, S. A. Nasar, “Analysis of Fields and Forces in A Permanent Magnet Linear Synchronous Machine Based on the Concept of Magnetic Charge,” IEEE Trans. on Magnetics, vol. 25, no. 3, pp. 2713-2719, 1989.
[2] T. Mizuno, H. Yamada, “Magnetic Analysis of A Linear Synchronous Motor with Permanent Magnet,” IEEE Trans. on Magnetics, vol. 28, pp. 3027-3029, 1992.
[3] I. S. Jang, S. B. Yoon, J. H. Shim, D. S. Hyun, “Analysis of Forces in A Short Primary Type and A Short Secondary Type Permanent Magnet Linear Synchronous Motor,” IEEE Electrical Machine and Device Conference, pp. 7803-3946, 1997.
[4] K. H. Kim, D. J. Sim, J. S. Won, “Analysis of Skew Affect on Cogging Torque and BEMF for BLDCM,” IEEE Electrical Machine and Device Conference, pp. 7803-0453, 1991.
[5] T. Yoshimura, H. J. Kim, M. Watada, S. Torii, D. Ebihara, “Analysis of The Reduction of Detent Force in A Permanent Magnet Linear Synchronous Motor,” IEEE Electrical Machine and Device Conference, pp.0018-9464, 1995.
[6] Z. Q. Zhu, Z. P. Xia, D. Howe, P. H. Millor, “ Reduction of Cogging Force in Slotless Linear Permanent Magnet Motors,” IEE Proc.-Electr. Power Appl., vol. 144, no. 4, 1997.
[7] Touzhu Li, Gordon Slemon, “Reduction of Cogging Torque in Permanent Magnet Motor”, IEEE Trans. on Magnetics, vol. 24, no. 6, 1988.
[8] B. Ackemann, Dipl Phys, R. Sottek, R. I. Van Steen, “New Technique for Reducing Cogging Torque in A Class of Brushless DC Motor,” IEE Proc-Pt. B, vol. 139, no. 4, 1992.
[9] Y. D. Yao, D. R. Huang, J. C. Wang, S. H. Liou, S. J. Wang, “ Simulation Study of The Reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Trans. on Magnetics, vol 33, no. 5, 1997.
[10] T. K. Chung, S. K. Kim, S.Y. Hahn, “ Optimal Pole Shape Design for the Reduction of Cogging Torque of Brushless DC Motors Using Evolution Strategy,” IEEE Trans. on Magnetics, vol 33, no.2, March 1997.
[11] C. S. Koh, H. S. Yoon, K. W. Nam, H. S. Choi, “ Magnetic Pole Shape Optimization of Permanent Magnet Motors for Reduction of Cogging Torque,” IEEE Trans. on Magnetics
vol 33, no.2, March 1997.
[12] N. Bianchi, S. Bolognani, “ Brushless DC Motors Design: An Optimization Procedure Based on Genetic Algorithm,” IEE Conference Publication, no 444, September, 1997.
[13] C. Studer, A. Keyhani, T. Sebastian, S. K. Murthy, “ Study of Cogging Torque in Permanent Magnet Machines,” Annual Meeting of IEEE Industry Application Society, October 4-9, 1997.
[14] G. N. Vanderplaats, Numerical Optimization Techniques for Engineering Design with Applications, McGraw-Hill, Inc., 1984.
[15] K. H. Kim, D. J. Sim, J. S. Won, “ Analysis of Skew Effect on Cogging Torque
And BEMF for BLDCM,” IEEE Trans. on Magnetics, 1991
[16] J. Y. Hung, Z. Ding, “Design of currents to reduce torque ripple in brushless permanent magnet motors,” IEE Proc-B, vol. 140, no. 4, 1993.
[17] 〝永磁線性同步馬達頓動力之動態方程式推導及控制補償〞,中正大學機械所碩士論文,1999,沈德洋。
[18] P. L. Chapman, D. Scott, “ Optimal Control of Permanent Magnet AC Machine Drives with a Novel Multiple Reference Frame Estimator ” IEEE Trans. on Magnetics, 1999.
[19] C. K. Lee, N. M. Kwok, “Torque Ripple Reduction in BLDC Motors Velocity Control System Using an Optimal Control,” IEEE Trans. on Magnetics, 1993
[20] Duane C. Hanselman, Brushless Permanent Magnet Motor Design, McGraw-Hill, Inc., 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top