跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/13 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊哲維
研究生(外文):Jer-Weir Yang
論文名稱:無限長樑在移動外力作用下之動態特性研究
論文名稱(外文):THE STUDY OF THE DYNAMIC BEHAVIOR OF AN INFINITE BEAM SUBJECTED TO A CONVECTED LOADING
指導教授:郭春寶鄭志鈞
指導教授(外文):Chun-Pao KuoChih-Chun Cheng
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:157
中文關鍵詞:動態特性移動外力無限長樑
外文關鍵詞:Dynamic behaviorConvected loadingInfinite beam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本文係針對具流體承載及週期支撐的無限長樑在受到簡諧移動外力作用下之振動及聲能響應特性進行分析。文中提出了一種新的分析法,稱為波數-簡諧(Wavenumber-harmonic)法,乃藉由富立葉(Fourier)轉換及配合整體波數響應的關係而表示成一組宏觀的級數解析解,此級數解不僅可完整的表示因週期支撐而顯現的各種振動及聲能特性,更別於傳統上需將樑切成各單一次結構而受限於兩個次結構間邊界條件及相位差的 "韃?簡諧" (Space-harmonic)法。另文中亦說明此法與流體承載的易結合性及便於計算不同流體承載及週期支撐的無限長樑其聲能響應值。最後,對於不同的Bernoulli-Euler或Timoshenko樑及不同的週期彈性支撐或彈性基底等特性,亦藉由數值分析的結果來討論此法在各種外力移動速度、不同流體承載及彈性支撐作用下對樑振動量及聲能響應的影響。
ABSTRACT
The vibro-acoustic response of an infinite, fluid-loaded, periodically supported beam under a convected harmonic loading has been investigated. A new method, named wavenumber harmonic analysis, is proposed to formulate the vibro-acoustic model. This method involves the use of spatial Fourier transform, and then the associated wavenumber response is expressed in a series form. This series represents wave components of the flexural motion that characterizes the vibro-acoustic behavior of the periodic supported beam. This approach differs from the space-harmonic analysis, which describes the beam motion in a spatial domain. Instead of considering the dynamics of a single substructure as the space harmonic method, the proposed formulism does not require the information of the phase relation between two substructures. Furthermore, the fluid loading effect is easy to be incorporated and the sound power radiated from a fluid-loaded, infinite, periodically supported beam subjected to a moving load can be calculated conveniently. Numerical examples including vibro-acoustic analysis of fluid-loaded, periodically supported Bernoulli-Euler and Timoshenko beams, and beams on elastic foundation are demonstrated to illustrate the theoretical predictions.
Cover
ACKNOWLEDGE
ABSTRACT (CHINESE)
ABSTRACT (ENGLISH)
CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
CHAPTER
1. INTRODUCTION
1.1 Motivation and objective
1.2 Literature review
1.3 Dissertation outline
2. VIBRATION ANALYSIS OF A PERIODICALLY SPRING SUPPORTED BERNOULLI-EULER BEAM
2.1 Formulation
2.2 Analysis parameters
2.3 Numerical results and discussion
2.4 Conclusion
3. VIBRO-ACOUSTIC ANALYSIS OF A PERIODICALLY SPRING-SUPPORTED TIMOSHENKO BEAM
3.1 Formulation
3.2 Analysis parameters
3.3 Numerical results and discussion
3.4 Conclusion
4. A BEAM ON AN ELASTIC FOUNDATION
4.1 Equation of motion of a Bemoulli-Euler beam on an elastic foundation
4.2 Equation of motion of a Timoshenko beam on an elastic foundation
4.3 Analysis parameters
4.4 Numerical results and discussion
4.5 Conclusion
5. CONCLUSION
5.1 Conclusion
5.2 Future work
REFERENCES
PUBLICATIONS
VITA
REFERENCES
Cheng, C. C., and Chui, C. M., 1999, "Sound Radiation from Periodically Spring-Supported Beams under the Action of Moving Line Forces," Journal of Sound and Vibration, 226, pp83-99.
Craig, R. R., 1934, Structural Dynamics. John Wiley & Sons, Inc., New York, pp.192-198.
Cray, B. A., 1994, "Acoustic Radiation from Periodic and Sectionally A Periodic Rib-stiffened Plates," Journal of the Acoustical Society of America, 95(1), pp.256-264.
Ewing, W. M., Jardetzky, W. S., and Press, F., 1957, "Elastic Waves in Layered Media," McGraw-Hill, New York.
Cremer, L., and Leilich, H., O., 1953, "Zur Theorie der Biegekettenleiter," Archiv der Elektrischen Ubertragung 7, pp261-273
Fahy, F., 1985, Sound and Structural Vibration, Radiation, Transmission and Response, Academic Press, Orlando, Florida, pp.66-73.
Feit, D., and Liu, Y. N., 1985, "The Nearfield Response of a Line Driven Fluid-Loaded Plate," Journal of the Acoustical Society of America, 78(2), pp.763-767.
Graff, K. F., 1991, Wave Motion in Elastic Solids. Dover Publications, New York, pp.141-187.
Gutowski, T. G., and Dym, C. L., 1976, "Propagation of Ground Vibration: A Review," Journal of Sound and Vibration, 42(2), pp.179-193.
Gupta, G. S., 1970, "Natural Flexural Waves And the Normal Modes of Periodically-Supported Beams and Plates," Journal of Sound and Vibration, 13(1), pp.89-101.
Gupta, G. S., 1971, "Natural Frequencies of Periodic Rib-skin Structures Using a Wave Approach," Journal of Sound and Vibration, 16, pp.567-580.
Heckl, M., 1960, "Wave Propagation On Beam-Plate System," Journal of the Acoustical Society of America, 33(5), pp. 640-651.
Heckl, M., 1964, "Investigation on the Vibrations of Grillages and Other Simple Beam Structures," Journal of the Acoustical Society of America, 36, pp. 1335-1343.
Jones, D. V., and Petyt, M., 1991, "Ground Vibration in Vicinity of a Strip Load: A Two-dimensional Half-space Model," Journal of Sound and Vibration, 147(1), pp.155-166.
Junger, M.C., and Feit, D., 1986, Sound Structures and Their Interaction, 2nd Ed., MIT Press, Cambridge, MA.
Keltie, R. F., and Peng, H., 1989, "Sound Radiation From Beams Under the Action of Moving Line Forces," ASME Journal of Applied Mechanics, paper No. 89-APM-19, pp.1-6.
Krylov, Victor. V., and Ferquson, C., 1994, "Calculation of Low-Frequency Ground Vibrations from Railway Trains," Applied Acoustics, 42, pp.199-213.
Krylov, Victor. V., 1995, "Generation of Ground Vibrations by Superfast Trains," Applied Acoustics, 44, pp.149-164.
Krylov, Victor. V., 1996, "Vibrational Impact of High-speed Trains. I. Effect of Track Dynamics," Journal of the Acoustical Society of America, 100(5), pp.391-401.
Lin, Y. K., and McDaniel, T., J., 1969, "Dynamics of Beam-type Periodic Structures," Transactions of the ASME Journal of Engineering for Industry, 91(Series B), pp.1133-1141.
Mace, B. R., 1980a, "Periodically Stiffened Fluid-Loaded Plates, I: Response to Convected Harmonic Pressure and Free Wave Propagation," Journal of Sound and Vibration, 73, pp.473-486.
Mace, B. R., 1980b, "Periodically Stiffened Fluid-Loaded Plates, II : Response to Line and Point Force," Journal of Sound and Vibration, 73, pp.487-504.
McDaniel, T., J., 1970, "Response and Internal Noise of a Fuselage to Random Excitation," ASME Winter Annual Meeting, Paper No. 70-WA/DE-9.
Mead, D. J., and Wilby, E., G., 1966, "The Random Vibrations of a Multi-supported Heavily Damped Beam," The Shock and Vibration Bulletin, 35(3), pp.45-55.
Mead, D. J., 1970a, "Free Wave Propagation In Periodically Supported, Infinite Beams," Journal of Sound and Vibration, 11(2), pp.181-197.
Mead, D. J., 1970b, "Vibration Response and Wave Propagation in Periodic Structures," Transactions of the ASME Journal of Engineering for Industry, 93(Series B), pp.783-792.
Mead, D. J., and Pujara, K. K., 1971, "Space Harmonic Analysis of Periodically Supported Beams: Response to Convected Random Loading," Journal of Sound and Vibration, 14(4), pp.525-541.
Mead, D. J., and Mallik, A. K., 1976, "Approximate Method of Predicting the Response of Periodically Supported Beams Subjected to Random Convected Loading," Journal of Sound and Vibration, 47(4), pp.457-471.
Mead, D. J., 1986, "A New Method of Analyzing Wave Propagation In Periodic Structures; Applications to Periodic Timoshenko Beams and Stiffened Plates," Journal of Sound and Vibration, 104(1), pp.9-27.
Mead, D. J., 1990a, "Plates with Regular Stiffening in Acoustic Media; Vibration and Radiation," Journal of the Acoustical Society of America, 88(1), pp.391-401.
Mead, D. J., and Yaman, Y., 1990b, "The Harmonic Response of Uniform Beams on Multiple Linear Supports: A Flexural Wave Analysis," Journal of Sound and Vibration, 141(3), pp.465-484.
Mead, D. J., and Yaman, Y., 1991a, "The Response of Infinite Periodic Beams to Point Harmonic Forces: A Flexural Wave Analysis," Journal of Sound and Vibration, 144(3), pp.507-530.
Mead, D. J., and Yaman, Y., 1991b, "The Harmonic Response of Rectangular Sandwich Plates with Multiple Stiffening: A Flexural Wave Analysis," Journal of Sound and Vibration, 145, pp.409-428.
Mead, D. J., 1996, "Wave Propagation in Continuous Periodic Structures: Research Contributions from Southampton, 1964-1995," Journal of Sound and Vibration, 190(3), pp.495-524.
Mindlin, R. D., 1951, "Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates," ASME Journal of Applied Mechanics, 18(2), pp.31-38.
Morse, P., M., and Ingard, K., U., 1986, Theoretical Acoustics, Princeton Co., pp.731-732.
Ouyang, H. J., Williams, F, W, and Kennedy, D., 1994, "A General Method for Analyzing Wave Propagation along Longitudinally Periodic Structures," Journal of Sound and Vibration, 177, pp.277-281.
Rayleigh, L., 1887, "On the Maintenance of Vibrations by Forces of Double Frequency, and on the Propagation of Waves through a Medium Endowed with a Periodic Structure," Philosophical Magazine XXIV, pp145-159
Sheng, X., and Jones, C. J. C., and Petyt, M., 1999, "Ground Vibration Generated by a Harmonic Load Acting on a Railway Track," Journal of Sound and Vibration, 225(1), pp.3-28.
Stakgold, I., 1979, Green Functions and Boundary Value Problems. John Wiley & Sons, Inc., New York, pp.138-140.
Ungar, E. E., 1966, "Steady State Responses of One-dimensional Periodic Flexural Systems," Journal of the Acoustical Society of America, 39, pp. 887-894.
Wang, R. T., 1994, "Vibration Analysis of a Multi-Span Beam," Journal of the Chinese Society of Mechanical Engineers, 15(1), pp. 88-93.
Wang, R. T., and Lin, J., S., 1997, "Vibration of Multispan Frames due to Moving Loads," Journal of the Chinese Society of Mechanical Engineers, 18(2), pp. 151-162.
Yuan, J., and Dickinson, S, M, 1995, "On the Determination of Phase Constants for the Study of the Free Vibration of Periodic Structures," Journal of Sound and Vibration, 179(3), pp.369-383.
Zhong, W. X., and Williams, F, W, 1995, "On the Direct Solution of Wave Propagation for Repetitive Structures," Journal of Sound and Vibration, 181, pp.485-501.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top