跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明宗
論文名稱:WindowsNT環境下PC-Based即時控制架構之發展與應用
論文名稱(外文):The Development of Real-Time Control Architecture under NT Environment for PC-Based Control Application
指導教授:蔡孟勳蔡孟勳引用關係姚宏宗姚宏宗引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:118
中文關鍵詞:PC-Based 控制器即時多工作業系統開放式架構RTX4.2即時作業子系統NURBS插補器系統整合
外文關鍵詞:PC-Based ControllerReal-time Multi-tasking Operation SystemOpen ArchitectureRTX4.2NURBS InterpolatorSystem Integration
相關次數:
  • 被引用被引用:33
  • 點閱點閱:639
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
傳統工具機的控制器採用封閉式架構,使用者受到工具機軟硬體設備的限制,無法依據各自的需求自行設計並更新該系統的控制器;PC-Based開放式架構突破了以往的限制,使用者可以針對各類工具機伺服系統的軟硬體設備來自由搭配、整合及擴充。本研究選擇在此PC-Based開放式架構下,搭配即時多工作業系統的各項功能,開發出一套多軟體模組的PC-Based即時控制器,該系統並整合了即時控制器、NURBS插補器、線上監控以及網路遠端控制等四大模組,達到工具機控制器軟體化的目的。
除此之外,為了達到工具機高速、高精度的需求,本研究整合了插補器以及控制器的功能,針對工具機的PC-Based即時控制器規劃出系統化的設計流程,在NURBS插補器以及PID控制器參數的搭配下,由數值模擬結果顯示,該設計流程大幅提昇了工具機的循圓輪廓誤差以及加工進給速度,本研究並利用XY平台的循圓實驗證實了該系統的穩定性以及可行性,最後針對PC-Based即時控制器進行整體效能的評估,證實能夠達到即時控制的性能。
Closed architecture is adopted by traditional controllers of machine tool, users are subject to constrains of software, hardware of machine tool and can not redesign and update the system controllers based on their own requirements; The development of PC-Based open architecture open a track to overcome the mentioned difficulties. Users can freely organize, integrate, and expand all kinds of facilities on servo system of machine tool. Based on PC-Based open architecture, we employ many functions of real-time multi-tasking operation system to develop multi-modules of PC-Based real-time controller. The controller integrates four software modules, including real-time controller, NURBS interpolator, on-line monitoring and network remote control in the system, to achieve the goal of software-based controllers.
Besides, in order to satisfy the requirements of high-speed and high-precision on machine tool, we consider the design of interpolator and controller into one process, and systematically develop a design procedure for the PC-Based real-time controller. By adjusting parameters of NURBS interpolator and PID controller, the contouring error and feedrate of tracking a circle are improved significantly under the design process. Finally, We also use experimental results of XY table to prove the stability and reliability of the system. The overall efficiency validates the successful implementation of real-time control.
目 錄
頁次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒 論
1-1前言………………………………………………………………...1
1-2研究動機與目的…………………………………………………...2
1-3文獻回顧…………………………………………………………...7
1-4研究方法……………………………….………………………....10
1-5論文架構……………………………….………………………....11
第二章 PC-Based即時控制系統架構
2-1開放式架構控制系統…………………………………………….13
2-1-1 開放式架構控制系統之簡介……………………...….….…13
2-1-2 OSACA架構…………………………………………………13
2-2 PC-Based多工作業系統……………………………………...….15
2-3 PC-Based即時控制系統…………………………...…………….17
2-3-1 PC-Based即時控制系統效能評估………………….……... 18
2-3-2 RTX子作業系統…………………………..…….…….….…19
2-4整合PC-Based即時多工作業系統架構…………………………21
2-4-1 Windows NT與RTX4.2子作業系統之整合……………..…21
2-4-2 PC-Based控制器硬體平台與軟體模組…………………….22
第三章 系統架構介紹
3-1直流伺服控制系統分析……………………...………………..…28
3-1-1馬達等效轉動慣量之推導…………………………….…….28
3-1-2電流控制迴路……………………………..…….…….….….31
3-1-3速度控制迴路…………………………………………...…...32
3-1-4位置控制迴路……………………………..…….…….….….32
3-1-5伺服控制系統鑑別…………………………………….…….33
3-2整合雙軸運動控制系統架構……………………...…...………...39
3-2-1 XY平台單軸追蹤誤差之推導…………………... ………...39
3-2-2 XY雙軸動態匹配之循圓輪廓誤差公式…………………...42
3-2-3 XY雙軸動態不匹配之循圓輪廓誤差公式………….……..45
第四章 運動軌跡之路徑規劃曲線
4-1 NURBS曲線/曲面簡介.…………….….………...……...…...….50
4-1-1 NURBS曲線/曲面數學理論……….….…...………………..50
4-1-2 NURBS曲線與傳統CAD曲線幾何特性之比較…………..52
4-1-3 NURBS NC碼與G-code NC碼規格………………………..54
4-2加減速規劃及加減速架構法則………………………………….56
4-2-1直線型、指數型及拋物線型加減速規劃…………….……...56
4-2-2前加減速及後加減速架構……………………….……….…58
第五章 NURBS插補方法
5-1 NURBS插補方法概述…………...……….…….………..………60
5-2伺服延遲誤差…………...……….…………...…………………..61
5-3最大容許進給速度之求取………………….………...………….62
5-4進給速率曲線的平滑化…………………….………...………….64
5-5 NURBS曲線即時插補位置之計算……..………...……………..66
第六章 實例模擬及實驗結果
6-1伺服控制系統之系統鑑別結果………………………………….74
6-2循圓輪廓誤差模擬分析………………………………..……..….87
6-3 PC-Based控制器強健性及效能評估……………………………98
第七章 結論及未來研究方向…………………………………...103
附 錄…………………………………..………....…….………...105
參考文獻………………………………………...…………………...114
表目錄
表2-1 Windows NT作業系統軟硬體中斷要求等級………………..18
表2-2 RTX與INTime NT extension即時控制軟體性能之比較……19
表5-1 兩種循圓輪廓誤差值隨轉角速度變化的比較………………64
表6-1 X,Y兩軸系統鑑別之輸入訊號………………………….……74
表6-2 X,Y兩軸BJ系統鑑別演算法之系統轉移函數………………76
表6-3 X,Y兩軸ARMAX系統鑑別演算法之系統轉移函數………76
表6-4 循圓輪廓誤差模擬結果(K=20,KP=100,KI=6500)……………88
表6-5 循圓輪廓誤差模擬結果(K=20,KP=100,KI=1000)……………90
表6-6 位置開迴路及閉迴路轉移函數所有的系統特性參數………92
表6-7 不同執行緒優先權等級下PC-Based控制器效能測試……...99
圖目錄
圖1-1 PC控制技術的整合工作環境………………...……………..…3
圖1-2 PC-Based控制器架構……………..…………………..………..4
圖1-3 PC-Based即時控制器架構……………………………………..6
圖1-4 開放式架構控制系統的平台架構…………………………....10
圖2-1 OSACA開放式架構控制系統的系統平台………………..…14
圖2-2 Windows NT4.0作業系統整體架構………………………….16
圖2-3 Windows NT搭配RTX即時子作業系統的整體架構………21
圖2-4 PC-Based控制器硬體實驗架構圖……………………………22
圖2-5 PC-Based控制器軟體模組架構圖……………………………24
圖2-6 PCBManager以及PCBController內部各類函數功能………25
圖3-1 單一伺服驅動軸示意圖……………………………………....29
圖3-2 單一伺服驅動軸套筒部分的力平衡圖……………………....30
圖3-3 單一伺服驅動軸導螺桿部分的力平衡圖……………..……..30
圖3-4 伺服驅動系統系統鑑別方塊圖……………………………....33
圖3-5 系統鑑別流程圖(時域)………………………………………..35
圖3-6 系統鑑別虛擬隨機二進位輸入訊號…………………………37
圖3-7 速度回授訊號原始資料與處理後資料之比較圖……………37
圖3-8 外在干擾本身以及外在干擾與輸入訊號間之餘值分析圖…38
圖3-9 追蹤誤差與輪廓誤差的關係圖………………………………39
圖3-10 速度前饋控制系統架構……………………………………..40
圖3-11 雙軸伺服系統輸出與輸入之關係……………………………45
圖3-12 雙軸伺服系統循圓輪廓誤差示意圖………………………....49
圖4-1 Bezier、B-spline和NURBS曲線關係圖……………………...52
圖4-2 進給速度無加減速規劃………………………………………56
圖4-3 直線形加減速………………………………………..………..56
圖4-4 指數型加減速…………………………………………..……..57
圖4-5 拋物線形加減速………………………………………………57
圖4-6 前加減速規劃流程圖…………………………………………58
圖4-7 後加減速規劃流程圖…………………………………………58
圖5-1 兩種循圓輪廓誤差隨轉角速度變化的趨勢圖………………63
圖5-2 加工路徑曲率半徑與曲線變化的關係圖……………………65
圖5-3 進給速度曲線平滑化動作……………………………………65
圖5-4 兩種循圓輪廓誤差在低轉角速度下的趨勢圖………………68
圖5-5 NURBS曲線插補路徑………………………………………..69
圖6-1 X軸BJ系統鑑別模型之輸入及輸出訊號圖(No.1)………….77
圖6-2 X軸BJ系統鑑別模型之餘值分析圖(No.1)…………………77
圖6-3 X軸ARMAX系統鑑別模型之輸入及輸出訊號圖(No.1)…..78
圖6-4 X軸ARMAX系統鑑別模型之餘值分析圖(No.1)…………..78
圖6-5 Y軸BJ系統鑑別模型之輸入及輸出訊號圖(No.2)…………79
圖6-6 Y軸BJ系統鑑別模型之餘值分析圖(No.2)………………….79
圖6-7 Y軸ARMAX系統鑑別模型之輸入及輸出訊號圖(No.2)…..80
圖6-8 Y軸ARMAX系統鑑別模型之餘值分析圖(No.2)…………..80
圖6-9 Y軸BJ系統鑑別模型之輸入及輸出訊號圖(No.3)…………81
圖6-10 Y軸BJ系統鑑別模型之餘值分析圖(No.3)………………...81
圖6-11 Y軸ARMAX系統鑑別模型之輸入及輸出訊號圖(No.3)…82
圖6-12 Y軸ARMAX系統鑑別模型之餘值分析圖(No.3)…………82
圖6-13 Y軸BJ系統鑑別模型之輸入及輸出訊號圖(No.4)………...83
圖6-14 Y軸BJ系統鑑別模型之餘值分析圖(No.4)………………...83
圖6-15 Y軸ARMAX系統鑑別模型之輸入及輸出訊號圖(No.4)…84
圖6-16 Y軸ARMAX系統鑑別模型之餘值分析圖(No.4)…………84
圖6-17 Y軸BJ系統鑑別模型之輸入及輸出訊號圖(No.5)………...85
圖6-18 Y軸BJ系統鑑別模型之餘值分析圖(No.5)………………...85
圖6-19 Y軸ARMAX系統鑑別模型之輸入及輸出訊號圖(No.5)…86
圖6-20 Y軸ARMAX系統鑑別模型之餘值分析圖(No.5)…………86
圖6-21 循圓輪廓誤差模擬結果(K=20,KP=100,KI=6500)…………..88
圖6-22 隨速度迴路積分控制器KI變化之循圓輪廓誤差…………..89
圖6-23 循圓輪廓誤差模擬結果(K=20,KP=100,KI=1000)…………..90
圖6-24 位置開,閉迴路轉移函數波德圖(K=20,KP=100,KI=6500)….93
圖6-25 位置開,閉迴路轉移函數波德圖(K=20,KP=100,KI=1000)….93
圖6-26 隨速度迴路積分控制器KI變化之循圓輪廓誤差…………..94
圖6-27 隨速度迴路積分控制器KI變化之平均系統增益值………..95
圖6-28 循圓輪廓誤差模擬結果(K=20,KP=100,KI=1296)…………..96
圖6-29 循圓輪廓誤差值(K=20,KP=100,KI=1296)…………………..96
圖6-30 伺服系統輸出電壓,電流,扭矩及單軸輸出速度對時間的時變
曲線圖(KI=1296,ω=8.19) …………………………………...97
參考文獻
[1]P. Lutz and W. Sperling, ”OSACA-the vender neutral Control Architecture”, Proceedings of the European Conference on Integration in Manufacturing, 1997
[2]P. Lutz and W. Sperling, ”Design Applications for an OSACA Control”, Proceedings of the International Mechanical Engineering Congress and Exposition(The ASME Winter Annual Meeting), 1997
[3]Ge’za Haidegger* and Ja’nos Nacsa*, “Shop-floor Communication with OSACA-Complaint Controllers”, IEEE, 1997
[4]Ezio Bassi and Francesco Benzi,etc., ”Communication Protocols for Electrical Drives”, IEEE, 1995
[5]Tarek Ben Ismail, Mohamed Abid and Jerraya, ”COSMOS: A coDesign Approach for Communication Systems”, IEEE, 1994
[6]John Ham, ” OACG: A framework for Developing Open Control ”, IEEE, 1998
[7]Chrysler Ford GM, “Requirements of Open, Modular Architecture Controllers for Applications in the Automotive Industry, Version 1.1”, OMAC Technology Report, 1997
[8]Marsden G.D. and Robinson P., “Development of a PC-Windows based universal control system”, The Technology Exploitation Process, Fifth International Conference on FACTORY 2000, IEEE, No. 435, 1997
[9]Petrone Dean J., Stackhouse Michael D., “PC-based Control Goes Real-Time”, Control Engineering, Vol. 45, No. 6, Apr. 1998
[10]Caudy N. and McFearin L., “Can Real-Time Extensions Survive a Windows NT Crash?”, Application-Specific Systems and Software Engineering and Technology 1999, ASSET ''99 Proceedings 1999 IEEE Symposium on, pp. 95 -102
[11]Y. Koren, “Control of Machine Tools”, Journal of Manufacturing Science and Engineering, Vol.119, pp.749-755, 1997
[12]M. Shpitalni, Y.Koren and C.C. Lo, ”Real-time curve interpolators”, Computer-Aided Design, Vol.26, No.11, pp.832-838, 1994
[13]Dong-II Kim, “Study on Interpolation algorithm of CNC Machine Tools”, IEEE Industry Application Conference thirtieth IAS Annual Meeting, pp.1930-1937, 1997
[14]S.S. Yeh, P. L. Hsu, “The speed-controlled interpolator for machining parametric curves”, Computer-Aided Design, Vol.31, pp.349-357,1999
[15]D. Kim, J. Song and S. Kim, “Dependence of Machine Accuracy on Acceleration/Deceleration and Interpolation Methods in CNC machine Tools”, IEEE, pp.1898-1905, 1994
[16]C. S. Chen and A. C. Lee, “Design of acceleration/deceleration profiles in motion control based on digital FIR filters”, International Journal of Machine Tools & Manufacture, Vol. 38, pp.799-825, 1999
[17]C. S. Chen and A. C. Lee, “Path Planning for CNC Contouring Around a Corner”, 1999 SIN-GERMAN JOINT On High-speed and Precision Machining, pp.97-107, 1999
[18]M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital Control”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.109, pp.65-68, 1987
[19]B. Haack and M.Tomizuka, “The effect of adding zeros to feedforward controllers”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.113, pp.6-10, 1991
[20]D. Torfs, J. D. Schutter and J. Swevers, “Extended bandwith zero phase error tracking control of nonminimum phase systems”, Vol.114, pp.347-351, 1997
[21]M. Tomizuka, ”On the design of digital tracking controllers”, ASME Transaction Journal of Dynamic System, Measurement and Control,Vol.114, pp.347-351, 1992
[22]Y. Funahashi and M. Yamada, “Zero phase error tracking controllers with optimal gain characteristics”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.115, pp.311-318, 1993
[23]C. H. Meng and J. J. Chen, ”Precision tracking control of discrete time nonminimum phase systems”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.115, pp.238-245, 1993
[24]D. Torf and J. D. Schutter, “Optimal feedforward prefiter with frequency domain specification for nonminimum phase systems”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.118, pp.791-795, 1996
[25]M. Yamada,Y. Funahashi and S. Fujiwara, “Zero phase error tracking system with arbitrarily specified gain characteristics”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.119, pp260-264, 1997
[26]Y. Koren, “Cross-Coupled Biaxial Computer for Manufacturing Systems”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.102, No4, pp.265-272, 1980
[27]Y. Koren and C.C. Lo, “Variable Gain Cross Coupling Controller for Contouring”, Annuals of CIRP, Vol.40, No.12, pp.371-374, 1991
[28]H. Y. Chung and C. H. Lin, “A Model Reference Adaptive Control Strategy for improving Contour Accuracy of Muitiaxis Machine Tools”, IEEE Transaction on Industry Application, Vol.28, No1, pp.271-227, 1991
[29]H. Y. Chung and C. H. Lin, “Cross-Coupled Adaptive Feedrate Control for Multiaxis Tools”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.113, No.3, pp.451-457, 1992
[30]P. K. Kulkarni and K. Srinivasan, “Optimal Contouring Control of Multiaxis Drive Servomachenisms”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.111, No.2, pp.140- 148, 1989
[31]P. K. Kulkarni and K. Srinivasan, “Cross-Coupled Control of Biaxial Feed Drive Servomachenisms”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.112, No.2, pp.225- 232, 1990
[32]Y. S. Shieh, A.C. Lee and C.S. Chen, “Cross-Coupled Biaxial step control for CNC EDM”, International Journal of Machine Tools Manufacturing, Vol.36, No.12, pp.1363-1383, 1996
[33]A. J. Crispin, G. C. Taylar and G. Waterworth, “Neural network cross-coupling gain controller for a biaxial contouring system”, Proceeding of the American Control Conference, pp.351-352, 1999
[34]S. S. Yeh and P. L. Hsu, “Theory and Applications of the Robust Cross-Coupled Control Design”, ASME Transaction Journal of Dynamic System, Measurement and Control, Vol.212, pp.524-530, 1999
[35]S. S. Yeh and P. L. Hsu, “Analysis and Design of the Integrated Controller for Precise Motion Systems”, IEEE Transactions on Control System Technology, Vol.7, No.6, 1999
[36]A. Poo, J. G. Bollinger and W. Younkin, “Dynamic Errors in Type I Contouring Systems”, IEEE Transactions on Industry Applications, Vol.8, pp.477-484, 1972
[37]“RTXTM4.2 for Windows NT User’s Guide”, VenturCom Inc., pp.40-41,50-57, 1998
[38]“RTXTM4.2 Reference Guide”, VenturCom Inc., 1998
[39]Lennart Ljung, “System Identification Toolbox User’s Guide”, The Math Works Inc., July 1991
[40]郭銘仁, “高速銑削NURBS插補技術發展”,國立中正大學機械工程研究所碩士論文, pp.19-26,46-47,63, 1999
[41]L. Piegl, ”On NURBS: A Survy”, IEEE Computer Graphics & Applications, pp.55-71, 1991
[42]黃允伸, “CNC運動控制加減速法則之研究”,國立中正大學機械工程研究所碩士論文, pp.8-12, 1996
[43]Y. Koren, “Computer Control of Manufacturing Systems”, pp.45-63, 1983
[44]Franklin G., Powell J. D. and Emami-Naeini, “ Feedback Control of Dynamic Systems ”, Addison-Wesley Pub. Company, 1994
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊