跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何立瑋
研究生(外文):Li-wei Ho
論文名稱:離子佈植損傷對摻雜擴散之影響
論文名稱(外文):The Impact of Implant Damage on Dopant Diffusion
指導教授:張睿達
指導教授(外文):R.D. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:40
中文關鍵詞:暫態加速擴散排差
外文關鍵詞:BoronBF2Transient Enhanced Diffusiondislocation loop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4875
  • 評分評分:
  • 下載下載:173
  • 收藏至我的研究室書目清單書目收藏:0
隨元件的閘極長度(Lg)縮小,對於淺接面(Shallow junction)的需求亦日益重要。離子佈植技術所產生矽晶格的破壞,在而後的回火所引起的暫態加速擴散(Transient Enhanced Diffusion,TED)對元件特性影響很大。
硼離子(原子量11)佈植所產生的晶格破壞(damage)會引起TED的發生。對於高濃度的硼佈植,在投影區域(projected range,Rp)中的濃度因受到叢聚效應(clustering effect)的影響而固定不變。而其內部的擴散之行為發生是很難去觀察的。
利用預先植入硼同位素(原子量10)於晶片深處的方法觀察暫態加速擴散的現象。實驗結果藉由二次離子質譜(SIMS)及穿透式電子顯微鏡(TEM)的分析,將從濃度、能量及溫度的觀點探討。
對於高濃度的硼佈植將在Rp附近產生高密度之差排(dislocation loop)缺陷。與中濃度佈植比較,TED將有效的被抑制。而佈植能量愈低,TED愈不明顯,乃由於愈高密度之差排產生。但不同的離子植入,11B和BF2,所產生之差排缺陷類型及能量與密度關係也不同,其在Rp的擴散完全不同。在較高溫度的回火,TED發生後將由熱擴散主導。這些將藉由10B的觀察而有所發現。
During the shrinkage of the device dimensions, the demand of shallow junctions becomes more important. Ion implantation technology induce silicon lattice damage causing transient enhanced diffusion (TED) by releasing excess point defect in subsequence annealing. It has a strong impact for device characteristic.
A method was developed to investigate TED of implanted boron by observing the redistribution of buried boron isotopes in the implanted region. At the projected range (Rp), TED was hardly observed due to transient boron solubility. Therefore, a 10B buried layer was created to monitor TED induced by various 11B implants. The implanted samples were analysis by secondary ion mass spectrometer (SIMS) for doping profiles and transmission electron microscope (TEM) pictures of residue defects.
TEM pictures show dislocation loops induced from high dose ion implantation. It reduces more TED significantly than medium dose implantation. For low energy B implants, TED was suppressed at Rp due to high-density loops. However, BF2 implants show more TED at the projected range at low energies because the loop density is decreased by surface effect. For high temperature annealing, the thermal diffusion dominates the diffusion. More dopant redistribution was observed. Larger residue dislocation loops were also observed.
Chapter 1 Introduction…………………………………………………1
Chapter 2 Experimental
2-1.Process……………………………………………………………10
22.Analysis……………………………………………………………10
Chapter 3 Results and Discussions
3-1. Concentration Effect…………………………………………12
3-2. Energy Effect for11B+implants……………………………17
3-3. Energy Effect for BF2+ implants.………………………22
3-4. Comparison of BF2 and B implants…………………………27
3-5. Temperature Effect….………………………………………….30
Chapter 4 Conclusion.…………………………………………………35
References……………………………………………………………37
[1]. R.B. Fair, in “ULSI Technology” edited by C.Y. Chang, S.M. Sze,(McGraw-Hill, New York, 1996), pp. 176-179.
[2]. J.liu, et al., “Transient Enhanced Diffusion and Defect Studies in B implanted Si”, Ion Implantation Technology Proceeding of 11th International Conference, pp.626-629. (1997)
[3]. M.Giles, et al., “Implant Damage and Transient Enhanced Diffusion Modeling”, Solid State Technology, pp.97-104. (1998)
[4]. P.A. Stolk, et al., “Physical mechanisms of Transient enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys.,81, pp.6031-6050.(1997)
[5]. M. Orlowski, “Experimental Evidence and Interpretation of Dopant-Point Defect Pare Diffusion”, Appl. Phys. Lett., 58, pp.1479-1481.(1991)
[6]. C.S. Refferty, et al., “Explanation of Reverse Short channel Effect by Defect Gradients”, IEDM’93, pp.311-314. (1993)
[7]. M. Giles, “Transient Phosphorus Diffusion Below the Amorphization Threshold”, J. Electrochem. Soc., 138, pp.1160-1165.(1991)
[8]. S. Solmi, et al., “Diffusion of boron in silicon during post-implantation annealing”, J. Appl. Phys., 69, pp.2135-2142.(1991)
[9]. A.E. Michel, et al., “Implantation damage and the anomalous transient diffusion of ion-implanted boron”, Appl. Phys. Lett., 51, pp.487-489. (1987)
[10]. A.D. Lilak, et al., “A Physics-Based Modeling Approach for the Simulation of Anomalous Boron Diffusion and Clustering Behaviors”, IEDM’97, pp.493-496 (1997)
[11]. A.D. Lilak, et al., “Predictive Simulation of Transient Activation Processes in Boron-Doped Silicon Structures”, IEDM’98, pp.493-496 (1998)
[12]. M. Uematsu, “Simulation of Clustering and Transient Enhanced Diffusion of Boron in Silicon”, J. Appl. Phy., 84, pp.4781-4787 (1998)
[13]. M. Uematsu, “Clustering and Transient Enhanced Diffusion of B Doping Superlattices in Silicon”, Jpn. J. Appl. Phys., 38, pp.4718-4719 (1999)
[14]. M. Orlowski, “A New Clustering Model for Runaway Boron Pile-up Effect”, IEDM’97, pp.505-508 (1997)
[15]. G.Mannino, et al., “Role of self- and boron-interstitial clusters in transient diffusion in silicon”, Appl. Phys. Lett., 76, pp.855-857 (2000)
[16]. K.S. Jones, et al., “A Systematic Analysis of Defects in Ion-Implanted Silicon”, Appl. Phys. A., pp.1-34 (1988)
[17]. J. Liu, et al., “Evolution of Dislocation Loops in Silicon in an Inert Ambient-I”, Solid-State Electronics, 38, pp.1305-1312 (1995)
[18]. J. Liu, et al., “Evolution of Dislocation Loops in Silicon in an Inert Ambient-II”, Solid-State Electronics, 38, pp.1313-1319 (1995)
[19]. J.K. Listebarger, et al., “Study of end of range loop interactions with B+ implant damage using a boron doped diffusion layer”, J. Appl. Phys., 78, pp.2298-2302 (1995)
[20]. C. Bonafos, et al., “Transient enhanced diffusion of dopant in preamorphised Si: the role of EOR defects”, Nucl. Instr. And Meth. B, 106, pp.222-226 (1995)
[21]. K.S. Jonse, et al., “Diffusion of ion implanted boron in preamorphized silicon”, Appl. Phys. Lett., 68, pp.2672674 (1996)
[22]. H.S.Chao, et al., “Influence of dislocation loops created by amorphizing implants on point defect and boron diffusion in silicon”, Appl. Phys. Lett., 68, pp.3570-3572 (1996)
[23]. TWUPREM-IV user’s manual
[24]. L.J. Chen, et al., “Factors influencing the formation and growth of faulted loops in BF2+ implanted silicon”, J. Appl. Phys., 52, pp.3520-3526 (1981)
[25].M.E. Lunnon, et al., “Furnace and Rapid Thermal Annealing of P+/N junction in BF2-implanted silicon”, J. Electrochem. Soc., 132, pp.2473-2475 (1995)
[26]. Krishan Lai, et al., “Study of point defect clusters produced by BF2 implantation in silicon single crystals”, 69, pp.8092-8095 (1991)
[27]. M.C. Paek, et al., “A study of lattice damage in silicon induced by BF2 ion implantation”, J. Appl. Phys., 70, pp.4176-4180 (1991)
[28]. H. Kinoshita, et al., “Physical Model for the Diffusion of ion implanted boron and BF2 during RTA”, IEDM’92, pp.165-168
[29]. S.B. Felch, et al., “fluorine Effects in BF2+ implants at Various Energies”, Ion Implantation Tech. Proceed. Of the 11th Int. Conf., pp.611-614 (1997)
[30].V. Krishnamoorthy, et al., “Energy Dependence of Transient-enhanced-diffusion in Low energy High Dose Arsenic Implants in Silicon”, Ion Implantation Tech. Proceed. Of the 11th Int. Conf., pp.638-641 (1997)
[31]. R. Raman, et al., “Effect of surface proximity on end-of-range loop dissolution in silicon”, Appl. Phys. Lett., 74, pp.1591-1593 (1999)
[32]. Y. Kim, et al., “The effect of ion-implantation damage on dopant diffusion in silicon during shallow-junction formation”, J. Elec. Materials, 18, pp.143-150 (1989)
[33]. C. Bonafos, et al., “Transient enhanced diffusion of boron in presence of end-of-range defects”, J. Appl. Phys., 82, pp.2855-2861(1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top