跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝宗融
研究生(外文):Tsung-Jung Hsieh
論文名稱:模糊邏輯於非同步傳輸模式網路之應用
論文名稱(外文):ATM Networks Flow Control by Fuzzy Logic
指導教授:周智勳周智勳引用關係劉懷仁劉懷仁引用關係
指導教授(外文):Chih-Hsun ChouHuai-Jen Liu
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:57
中文關鍵詞:呼叫允諾控制可用位元率流量控制模糊邏輯非同步傳輸模式
外文關鍵詞:CACABRflow controlfuzzy logicATM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:1
隨著電腦網路科技在這幾年快速的進步,流量控制在高速網路上扮演著越來越重要的角色,然而在設計高速網路上流量控制的同時,許多人所提出來的方法大都是架構在流量的辨證上,因此難免會有一些先天上的限制,又加上流量具有突發(burst)的特性,導致在設計上存在著許多的不確定性。近幾年來有越來越多的人應用Soft Computing來解決控制方面的問題,但是把它運用在網路上的流量控制卻是相當少見,因此在本篇論文中,我們嘗試著應用模糊理論來處理非同步傳輸中流量控制的問題。首先,我們提出一個以模糊理論為理論基礎的呼叫允諾控制(Fuzzy logic based CAC),接著我們又設計一個具有適應能力的流量控制 (FATFC),它可以自動的調整頻寬給來源端使用,並且也能符合服務品質的要求。由實驗的結果可以看出來,我們所提出來的呼叫允諾控制(Fuzzy logic based CAC)和具有適應能力的流量控制 (FATFC) 能夠保證服務品質的要求,並且也能夠有效使用系統的資源。
As the computer and networking technologies advance at a fast pace in recent years, the traffic control plays a more and more important role in high-speed networks. Most traffic controller design on high speed networks are based on the source modeling, which can suffer from some limitations. In addition to the burst characteristic of the traffic, there are many uncertainties in the design process. In recent years, there are more and more applications of Soft Computing in the control problems, but less for the communication network control. Therefore, in this thesis we apply fuzzy logic to the ATM traffic control. Firstly, we propose a fuzzy logic based call admission control (CAC). Secondly, we present a fuzzy adaptive traffic flow controller (FATFC), which adaptively tunes the bandwidth of the sources to achieve the global QoS. Simulation results exhibit that the proposed CAC and FATFC guarantee the usual QoS requirement and achieve high system utilization.
Abstract (In Chinese)
Abstract (In English)
Acknowledgements
List of Figures
List of Tables
CHAPTER 1 INTRODUCTION
1.1 Motivation
1.2 Methodology and Contributions
1.3 Organization
CHAPTER 2 ATM TRAFFIC ENGINEERING
2.1 Asynchronous Transfer Mode (ATM)
2.1.1 ATM Service Architecture
2.1.2 Call Admission Control (CAC)
2.2 ABR Flow Control
2.3 Traffic Models
2.4 Literature Survey
CHAPTER 3 FUZZY LOGIC BASED CAC
3.1 Main idea
3.1.1 Bandwidth requirement
3.1.2 Maximum buffer utilization
3.2 Quality of Service
3.3 Fuzzy logic
3.4 The proposed fuzzy logic based CAC
3.4.1 Definition of membership functions
3.4.2 Construction of fuzzy rules
3.5 Experimental results
3.5.1 Simulation Environment
3.5.2 Simulation results and Discussion
CHAPTER 4 FUZZY LOGIC FOR ABR FLOW CONTROL
4.1 Main idea
4.2 The Fuzzy Adaptive Traffic Flow Controller (FATFC)
4.2.1 Definition of membership functions
4.2.2 Construction of fuzzy rules
4.2.3 Max-Min allocation algorithm
4.3 Experimental results
4.3.1 The Simulation Environment
4.3.2 Simulation 1
4.3.3 Simulation 2
CHAPTER 5 CONCLUSION AND FUTURE WORKS
5.1 Conclusion
5.2 Future works
BIBLIOGRAPHY
[1]D.K. Ahn and J.S. Park*, ”Analysis on statistical characteristics of WWW traffic on IP Level”, 14th ICOIN, pp6c-1.1-6c-1.6, January 2000.
[2]ATM Forum. ATM Forum Traffic Management Specification 4.0 April 1996.
[3]J. Aweya and Q.J. Zhang, “A direct neural controller for flow control in computer networks”, Neural Networks Proc., Vol. 1, pp. 140-145, 1998.
[4]J.J. Bae and T. Suda, “Survey of Traffic Control Schemes and Protocols in ATM Networks”, Proc. of the IEEE, Vol. 79, No. 2, pp. 170-189, February 1991.
[5]B. Bensaou, S. T.C. Lam, H.W. Chu and D.H.K. Tsang, “Estimation of the Cell Loss Ratio in ATM Networks with a Fuzzy System and Application to Measurement-Based Call Admission Control”, IEEE/ACM Trans. Networking, Vol. 5, No. 4, pp. 572-584, August 1997.
[6]A.R. Bonde, Jr. and S. Ghosh, “A comparative study of fuzzy versus “Fixed” thresholds for robust queue management in cell-switching networks”, IEEE/ACM Trans. Networking, Vol. 2, No. 4, pp. 337-345, August 1994.
[7]D. Botis, “A Fuzzy based bandwidth reservation scheme for VBR services”, Proc. of the IASTED, pp. 226-230, August 1999.
[8]A. Burrlee, H.P. Stern and P.P. Kazakos, “Transmission policies and traffic management in multimedia wireless networks”, Wireless Networks, Vol. 3, pp. 103-112, 1997.
[9]Z. Cao and E.W. Zegura, “Utility Max-Min: an application-oriented bandwidth allocation scheme”, INFOCOM ''99, Vol. 2, pp. 793-801.
[10]V. Catania and G. Ficili, “A Comparative Analysis of Fuzzy versus Conventional Policing Mechanisms for ATM Networks”, IEEE/ACM Trans. Networking, Vol. 4, No. 3, pp.449-459, June 1996.
[11]R.G. Cheng and C.J. Cheng, ”Design of a Fuzzy Traffic Controller for ATM Networks”, IEEE/ACM Trans. Networking, Vol. 4, No. 3, pp. 460-469, June 1996.
[12]R.G. Cheng, C.J. Chang and L.F. Lin, “A QoS-provisioning neural fuzzy connection admission controller for multimedia high-speed networks”, IEEE/ACM/ Trans. Networking, Vol. 7, No. 1, pp. 111-121, February 1999.
[13]F.M. Chiussi, Y.X. and V.P. Kumar, “Virtual queueing techniques for ABR service: Improving ABR/VBR Interaction”, INFOCOM ''97, Vol. 2, pp. 406-418.
[14]M.E. Crovella and A. Bestavros, “Self-Simalarity in World Wide Web Traffic: Evidence and Possible Causes”, IEEE/ACM Trans. Networking, Vol. 5, No. 6, pp. 835-846, December 1997.
[15]C. Douligeris and G. Develekos, “Neuro-Fuzzy control in ATM networks”, IEEE Communications Magazine, pp. 154-162, May 1997.
[16]Z. Fan, “New trends in ATM networks: a research view”, Computer Communications 22, pp. 499-515, 1999.
[17]M. Fontaine and D.G. Smith, “Automatically designed fuzzy system for connection admission control in ATM networks”, IEE Proc. Communications, Vol. 140, No. 2, pp. 113-119, April 1999.
[18]S. Ghosh and Q. Razouqi, “A survey of recent advances in fuzzy logic in telecommunications networks and new challenges”, IEEE Trans. Fuzzy System, Vol. 6, No. 3, pp. 443-447, August 1998.
[19]D.P. Heyman and T.V. Lakshman, “Source Models for VBR Broadcast-Video Traffic”, IEEE/ACM Trans. Networking, Vol. 4, No. 1, pp. 40-48, February 1996.
[20]A. Hiramatsu, “ATM Communications Network Control by Neural Networks”, IEEE Trans. Neural Networks, Vol. 1, No. 1, pp.122-130, March 1990.
[21]S. Jamin, “A Measurement-Based Admission Control Algorithm for Integrate Service Packet Networks”, IEEE/ACM Trans. Networking, Vol. 5, No. 1, pp. 56-70, February 1997.
[22]T.H. Lee, K.C. Lai and S.T. Duann, “Design of a Real-Time Call Admission Controller for ATM Networks”, IEEE/ACM Trans. Networking, Vol. 4, No. 5, pp. 758-765, October 1996.
[23]W.E. Leland, “On the Self-Similar Nature of Ethernet Traffic (Extended Version)”, IEEE/ACM Trans. Networking, Vol. 2, No. 1, pp. 1-15, February 1994.
[24]S. Mukherjee and D. Reininger, “An Adaptive Connection Admission Control Policy for VBR+ Service class”, INFOCOM ''98, Vol. 2, pp. 849-857.
[25]T. Murase, H. Suzuki, S. Sato and T. Takeuchi, “A Call Admission Control Scheme for ATM Networks Using a Simple Quality Estimate“, IEEE J. Select. Areas Commun., Vol. 9, No. 9, pp. 1461-1470, December 1991.
[26]M. Naghshineh and A.S. Acampora, “Design and control of micro-cellular networks with QOS provisioning for Data Traffic”, Wireless Networks, Vol. 3, pp. 249-256, 1997.
[27]T.D. Ndousse, “Fuzzy Neural control of voice cells in ATM networks”, IEEE J. Select. Areas Coommun., Vol. 12, No.9, pp. 1488-1494, December 1994.
[28]S.Y. Oh and D.J. Park, “Predictive fuzzy explicit rate allocation (PFERA) for traffic control in ATM networks”, IEEE International Fuzzy System Conference Proc., Vol. 2, pp. 750-755, August 1999.
[29]V. Paxson and S. Floyd, “Wide Area Traffic: The Failure of Poisson Modeling”, IEEE/ACM Trans. Networking, Vol. 3, No. 3, pp. 226-244, June 1995.
[30]S. Pierre and G. Legault, “A Genetic Algorithm for Designing Distributed Computer Network Topologies”, IEEE Trans. Systems, Man, and Cybernetics-part: b Cybernetics, Vol. 28, No 2, pp. 249-258, April 1998.
[31]M.F Ramalho and E.M. Scharf, “Fuzzy logic tool and genetic algorithms for CAC in ATM networks”, Electronics Letters 23rd, Vol. 32, No. 11, pp. 973-974, May 1996.
[32]I.S. Reljin, “Neural network based cell scheduling in ATM node”, IEEE Communication Letters, Vol. 2, No. 3, pp. 78-80, March 1998.
[33]N.K. Sharma, “Review of recent shared memory based ATM switches”, Computer Communications 22, pp. 297-316, 1999.
[34]N. Swaminathan, J. Srinivasan and S.V. Raghavan, “Bandwidth-demand prediction in virtual path in ATM networks using genetic algorithms”, Computer Communications 22, pp. 1127-1135, 1999.
[35]D.H.K. Tsange and B. Bensaou, “Fuzzy-Based Rate Control for Real-Time MPEG Video”, IEEE Trans. Fuzzy System, Vol. 6, No. 4, pp.504-516, November 1998.
[36]B. Williamson and C. Farrell, “Active Congestion Control”, GLOBECOM ‘98, Vol. 3, pp. 1509-1514.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊