跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邵立珠
研究生(外文):Shao Li-Chu
論文名稱:葛根素對大鼠體溫調節作用之研究
論文名稱(外文):Studies of puerarin on thermoregulatory response in rats
指導教授:闕甫謝明村謝明村引用關係彭文煌彭文煌引用關係
學位類別:碩士
校院名稱:中國醫藥學院
系所名稱:中國藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:78
中文關鍵詞:葛根素體溫
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:2
葛根素 (puerarin) 為野葛 (Pueraria lobata) 主要活性成分之一,係 isoflavones 類化合物,是中醫臨床上常用之清熱解表藥物,已知為 beta-adrenergic receptor 阻斷劑,具有解痙、抗心率不整、降血壓等作用,此外還具有解熱等作用,但有關 puerarin 解熱降溫作用之機轉至今仍並未見有研究報告提出;因此本研究擬就 puerarin 對清醒大鼠之解熱降溫作用機轉進行探討,期能有助於中藥之科學化。
研究結果顯示,由側腦室給予puerarin (100mg/kg, intracerebroventricular injection; i.c.v.) 可引起室溫下 (24±1℃) 正常清醒大鼠體溫降低作用,且腹腔給予 puerarin (5-30mg/kg, intraperitoneal administration; i.p.) 可引起一具劑量依存性之體溫降低作用,並同步降低大鼠下視丘 serotonin (5-HT) 之濃度;此降溫作用會因側腦室給予 serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT, 200mg/10ml, i.c.v.) 或皮下給予5-HT1A 受體之拮抗劑 (-)-pindolol (0.05, 0.5mg/kg, subcutaneously injection; s.c.)所減弱,但可被皮下給予 5-HT1A 受體之致效劑 8-hydroxy-dipropylaminotetralin (8-OH-DPAT; 0.05mg/kg; s.c.) 所加強。此外,puerarin 誘發之降溫作用亦會被5-HT2 受體之致效劑 (±)-2,5-dimethoxy-4-iodoamphetamine (DOI; 5, 10mg/10ml; i.c.v.; 0.5, 1mg/kg; i.p.)、quipazine (0.1, 1mg/kg; i.p.) 所拮抗,或為 5-HT2 受體之拮抗劑 pirenperone (0.2mg/kg; s.c.)、ketanserin (1mg/kg; i.p.) 所加強。由此可推知 puerarin 可能藉由降低下視丘 serotonin 之濃度,並作用於 postsynaptic serotonin 受體,致活 5-HT1A 受體及阻斷 5-HT2 受體,而達到降低體溫之作用。
其次,puerarin (10,30mg/kg; i.p.) 對室溫下細菌內毒素 lipopolysaccharide (LPS; 100mg/kg; i.p.) 所誘發發燒之大鼠,具有明顯及劑量依存性之解熱作用;puerarin (100mg/10ml, i.c.v.; 10, 30mg/kg; i.p.) 對側腦室給予內生性致熱原 IL-1b (10ng/10ml) 誘發之發燒反應與下視丘 serotonin 濃度增加現象,亦具有抑制作用。此外,puerarin (10, 30mg/kg; i.p.) 可明顯抑制 NO donor (S-nitroso-N-acetylpenicillamine; SNAP, 10mg/10ml; i.c.v.)、NO releaser (sodium nitroprusside; SNP; 20mg/10ml; i.c.v.) 和 cGMP 之類似物 8-Bromo-cGMP (100mg/10ml) 及 PGE2 (100mg/10ml; i.c.v.) 或 cAMP 之類似物 8-Bromo-cAMP (40mg/10ml, intrahypothalamic injection; i.h.)等熱原媒介物質物所誘發之發燒反應。
綜合以上結果,puerarin 具明顯之解熱降溫作用,其作用機轉可能是藉由抑制中樞 serotonin、nitric oxide 及 prostaglandin 等系統之活性所達成。
Puerarin is an isoflavone compound isolated from Pueraria lobata. The Puerariae radix has been used for antipyretic in Chinese. Puerarin, a beta-adrenergic receptor blocker, possesses anticonvulsive, antiarrhythmic and antihypertension effects. It also reduces 2,4-dinitrophenol-induced hyperthermia. However, the effects of puerarin on normal body temperature and pyrogenic fever are unknown. On this account, in the present study, experiments were carried out to assess the effects of puerarin on thermoregulatory responses in unanesthetized rats.
Puerarin (100mg/10ml,i.c.v.;5-30mg/kg, i.p.) caused a dose-related fall in both colonic temperature and the 5-HT release in the hypothalamus at room temperature. The serotonin release in the hypothalamus was monitored with a microdialyzed probe is association with microdialysis-high perforemance liquid chromatography. Puerarin induced hypothermia was attenuated by pretreatment with 5,7-dihydroxytryptamine (5,7-DHT; a serotonin neurotoxin, 200mg/10ml; i.c.v., one week ago), or (-)-pindolol (a 5-HTIA receptor/b adrenoceptor antagonist; 0.05, 0.5mg/kg; s.c.) but potentiated by (±)-8-hydroxydiopropylamino-teralin (8-OH-DPAT; a 5-HT1A receptor agonist; 0.05mg/kg; s.c.). In addition, the puerarin induced hypothermia was attenuated by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI; 5-HT2 receptor agonist; 5, 10mg/10ml; i.c.v.; 0.5, 1mg/kg; i.p.) or quipazine (a 5-HT2 receptor agonist; 0.5, 1mg/kg; i.p.), but potentiated by ketanserin (5-HT2 receptor antagonist; 1mg/kg; i.p.) or pirenperone (5-HT2 receptor antagonist; 0.2mg/kg; s.c.). These results indicate that puerarin may act through 5-HT1A receptor activation or 5-HT2 receptor antagonism within the brain to induce its hypothermia.
The fever induced by either lipopolysaccharide (LPS, 100mg/kg; i.p.) or interleukin-1b (IL-1b, 10ng/10ml; i.c.v.) was attenuated by treatment with puerarin (100mg/10ml, i.c.v.; 10, 30mg/kg, i.p.). Our microdialysis data revealed that puerarin (10, 30mg/kg; i.p.) reduces the increased 5-HT release in the hypothalamus and fever provoked by IL-1b injection. The hyperthermia induced by either S-nitroso-N-acetylpenicillamine (nitric oxide donor, 10mg/10ml; i.c.v.), sodium nitroprusside (NO releaser, 20mg/10ml; i.c.v.), 8-Bromo-cGMP (cGMP analogue, 100mg/10ml; i.c.v.), PGE2 (100mg/10ml; i.c.v.), or 8-Bromo-cAMP (cAMP analogue, 40mg/10ml; i.h.) was attenuated by treatment with puerarin (10, 30mg/kg; i.p.) in rats.
In conclusion, puerarin exerts its thermoregulatory response mainly through the serotoninergic, nitrergic or prostaglandinergic pathways in the central nervous system of rat brain.
中文摘要!
英文摘要iii
第一章緒 言1
第二章總 論4
第一節葛根之本草及文獻考察4
一、葛根之本草考察4
二、葛根之主要成分考察14
三、葛根藥理作用文獻考察16
第二節葛根素之文獻考察22
一、來源22
二、葛根素之結構與理化性質22
三、葛根素之藥理作用考察23
第三節體溫調節作用28
第三章實驗之部31
第一節實驗試劑31
第二節實驗動物32
第三節實驗方法32
一、大鼠之訓練與肛溫之測量方法32
二、室溫下 puerarin 對正常大鼠肛溫變化之影響32
三、大鼠腦內給藥管之安裝技術33
四、Puerarin 對正常大鼠下視丘 serotonin 濃度之影響33
五、破壞腦內 serotoninergic system 藥物對 puerarin 降溫作用之影響35
六、改變腦內 serotoninergic system 藥物對 puerarin 降溫作用之影響35
七、Puerarin 對 LPS 誘發大鼠發燒溫度變化之影響36
八、Puerarin 對 IL-1b 誘發大鼠發燒及下視丘 serotonin 濃度之影響37
九、Puerarin 對 S-nitroso-N-acetylpenicillamine (SNAP)、sodium nitroprusside (SNP) 與 8-Bromo-cGMP 誘發大鼠發燒溫度變化之影響37
十、Puerarin 對 prostaglandin E2 (PGE2) 與 8-Bromo-cAMP 誘發大鼠發燒溫度變化之影響38
十一、統計學分析38
第四節實驗結果39
一、室溫下 puerarin 對正常大鼠肛溫變化之影響39
二、Puerarin 對正常大鼠下視丘 serotonin 濃度之影響41
三、破壞腦內 serotoninergic system 藥物對 puerarin 降溫作用之影響43
四、改變腦內 serotoninergic system 藥物對 puerarin 降溫作用之影響44
五、Puerarin 對 LPS 誘發大鼠發燒溫度變化之影響51
六、Puerarin 對 IL-1b 誘發大鼠發燒及下視丘 serotonin 濃度之影響52
七、Puerarin 對 S-nitroso-N-acetylpenicillamine (SNAP)、sodium nitroprusside (SNP) 與 8-Bromo-cGMP 誘發大鼠發燒溫度變化之影響55
八、Puerarin 對 prostaglandin E2 (PGE2) 與 8-Bromo-cAMP 誘發大鼠發燒溫度變化之影響56
第四章討論57
第五章結論65
參考文獻66
表 目 錄
Table 1.The effects of puerarin on the hypothalamic serotonin (5-HT) release in the normal rats .41
Table 2.The effects of puerarin on the colonic temperature in rats treated by the 5,7-DHT..43
Table 3.The effects of puerarin on the colonic temperature in the hyperthermia rats induced by lipopolysaccharide (LPS).51
Table 4.The effects of puerarin on the colonic temperature in the hyperthermia rats induced by interleukin-1b (IL-1b)..52
Table 5.The effects of puerarin on the colonic temperature and hypothalamic 5-HT release in the hyperthermia rats induced by interleukin-1b (IL-1b)..53
Table 6.Effects of puerarin on the hyperthermia induced by intracerebroventricular injection (i.c.v.) of S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) or 8-Bromo-cGMP.55
Table 7.Effects of puerarin on the hyperthermia induced by intracerebroventricular injection (i.c.v.) of prostaglandin E2 (PGE2) or intrahypothalamic injection (i.h.) of 8-Bromo-cAMP.56
圖 目 錄
Fig. 1葛根之本草系統圖 13
Fig. 2Puerarin之結構22
Fig. 3Time course of the effects of intraperitioneal administraction of puerarin on colonic temperature in rats39
Fig. 4Time course of the effects of intracerebronventricular administraction of puerarin on colonic temperature in rats40
Fig. 5Time course of the effects of intraperitioneal administraction of puerarin on (a) colonic temperature (Tco) and (b) hypothalamic 5-hydroxytryptamine (5-HT) release in five control rats42
Fig. 6Effects of (-)-pindolol (0.05, 0.5mg/kg; s.c.) on the hypothermic response of puerarin in rats44
Fig. 7Effects of 8-OH-DPAT (0.01, 0.05mg/kg; s.c.) on the hypothermic response of puerarin in rats45
Fig. 8Effects of ketanserion (0.5, 1mg/kg; i.p.) on the hypothermic response of puerarin in rats46
Fig. 9Effects of pirenperone (0.05, 0.2mg/kg; s.c.) on the hypothermic response of puerarin in rats47
Fig.10Effects of quipazine (0.1, 1mg/kg; i.p.) on the hypothermic response of puerarin in rats48
Fig.11Effects of DOI (0.5, 1mg/kg; i.p.) on the hypothermic response of puerarin in rats49
Fig.12Effects of DOI (5, 10mg/rat; i.c.v.) on the hypothermic response of puerarin in rats50
Fig.13Time course of the effects of interleukin 1b (IL-1b; 10ng/10ml; i.c.v.) on (a) colonic temperature (Tco) and (b) hypothalamic 5-hydroxytryptamine (5-HT) release in vehicle (·) and 30mg/kg puerarin treated (a) rats (n=5 per group)54
1.吳培基:發燒。醫院藥學 1985; 2: 85-91。
2.Done AK. Treatment of fever in 1982: a review. Am J Med. 1983; 7 : 14-7.
3.中藥大辭典(下冊):葛根,上海科學技術出版社,上海 1986; pp.2307-10。
4.賴祥林、唐冰:葛根的實驗研究與臨床應用新進展。中國中藥雜誌 1989; 14 (5) : 52-5。
5.宋振玉主編:中草藥現代研究 第一卷,北京醫科大學和中國協和醫科大學聯合出版社,北京 1995; pp.258-305。
6.周遠鵬:葛根的藥理作用和臨床應用研究進展。中西醫結合雜誌 1984; 4 (11) : 699-702。
7.范禮理、趙德化、趙敏崎、曾貴云:葛根黃酮抗心律失常作用作用。藥學學報 1985; 20 (9) : 647-51。
8.呂欣然、高爾、許蘭芝、李華洲、康白、陳維寧、陳淑梅:葛根素對含 b 腎上腺素受體的離體器官和整體動物的阻斷作用。中國藥理學報 1986; 7 (6) : 537-9。
9. 呂寶彰、高爾、單京瑞、陳征途:葛根素對 b 腎上腺受體結合作用和腺酸環化活性的影響。解放軍醫學雜誌 1985; 10 (2) : 97-101。
10.Shen XL, Witt MR, Nielsen M, Sterner O. Inhibition of [3H] flunitrazepam binding to rat brain membranes in vitro by puerarin and daidzein. Acta Pharmaceutica Sinica. 1996; 31 (1) : 59-62.
11.段重高、李宏傳、徐理納:葛根素對金黃地鼠腦微循環的影響。中華醫學雜誌 1991; 71 (9) : 517-9。
12.姜秀蓮、徐理納:葛根素對小鼠實驗性微循環障礙的改善作用。藥學學報 1989; 24 (4) : 251-4。
13.賀風義、陳煥春、王書民、王瓊:葛根素治療心絞痛。新藥與臨床 1996; 15 (3) :148-51。
14.李小鷹、王培仁、邵建華、朱興雷、朱繼方:靜脈注射葛根素對犬急性心肌梗塞範圍的影響。山東醫學院學報 1984; 22 (3) : 9-17。
15.宋雪鵬、陳平平、柴象樞:葛根素對自發高血壓大鼠的降壓作用及其血漿腎素活性的影響。中國藥理學學報 1988; 9 (1) : 55-8。
16.Chai XS, Wang ZX, Chen PP, Wang LY, Lu XR, Kang B. Antiarrhythmic action of puerarin. Acta Pharmacologica Sinica. 1985; 6 (3) : 166-8.
17.Wang LY, Zhao AP, Chai XS. Effects of puerarin on cat vascular smooth muscle in vitro. Acta Pharmacologica Sinica. 1994; 15 (2) : 180-2.
18.Overstreet DH, Lee YW, Rezvani AH, Pei YH, Criswell HE, Janowsky DS Suppression of alcohol intake after administration of chinase herbal medicine, NPI-028, and its derivatives. Alcohol: Clin Exp Res. 1996; 20 (2) : 221-7.
19.Dong LP, Wang TY. Effects of puerarin against glutamate excitotoxicity on cultured mouse cerebral cortical neurons. Acta Pharmaciologica Sinica. 1998; 19 (4) : 339-42.
20.Zhou Y, Su X, Cheng B, Jiang J, Chen H. Comparative study on pharmacological effects of various species of Pueraria. Journal of Chinese Materia Medica. 1995; 20 (10) : 619-21.
21.Myers RD & Waller MB. Thermoregulation and serotonin, Health and Disease (Essman W ed.). Sepectrum, New York. 1978; 1-67.
22.謝文全:神農本草經 (古今功能輯注本),中國藥學研究所,台中 1995; pp.7。
23.那琦、謝文全:重輯名醫別錄,中國藥學研究所,台中 1977; pp.71。
24.森立之:本草經集注,南大阪印刷株式會社,日本 1972; pp.64。
25.岡西為人:重輯新修本草,國立中國醫藥研究所,台北 1964; pp.200。
26.謝文全:重輯開寶重定本草,中國藥學研究所,台中 1998; pp.106。
27.那琦:重輯嘉祐補注神農本草,中國藥學研究所,台中 1989; pp.83。
28.宋.唐慎微、艾晟:經史證類大觀本草,正言出版社,台北 pp.224。
29.明.李時珍:圖解本草綱目,文光圖書公司印行,台北 1970; pp.740。
30.清.吳其睿:植物名實圖考長編,世界書局,台北 1962; pp.568。
31.清.吳其睿:植物名實圖考,世界書局,台北 1974; pp.540。
32.鄭虎占主編:中藥現代研究與應用 (第五卷),學苑出版社,北京 1998; 1: pp.4302-25。
33.陰健、郭力弓:中藥現代研究與臨床應用I,學苑出版社,北京 1993; 10: pp.627-32。
34.王本祥主編:現代中藥藥理學,天津科學技術出版社,天津1997; 1: pp.145-55。
35.呂欣然、陳淑梅、孫塘:葛根對腎上腺素能受體阻滯作用的研究。藥學學報 1980; 15 (4) : 218-21。
36.曾貴云、周遠鵬、張麗英、范禮理:葛根的藥理研究I葛根對犬血壓、血管反應性、腦循環及外周循環的作用。中華醫學雜誌 1974; 54 (5) : 265-74。
37.焦鷺、劉紅岩、韓銳:葛根有效成分S86019 對HL-60細胞的分化誘導及細胞週期移行作用之研究。中華血液學雜誌 1990; 11 (2) : 83-5。
38.季宇彬主編:中藥有效成分藥理與應用,黑龍江科學技術出版社,哈爾濱 1994; pp.360-4。
39.趙愛平、王磊一、王福文、柴強、柴向樞:葛根素延緩易中風型自發高血壓大鼠缺血痙攣的發作和死亡。中國中藥雜誌 1998; 23 (7) : 431-44.
40.久保道德:葛根的藥理。國外醫學中醫中藥分冊 1993; 15 (3) : 23-5。
41.Fan S, Sun L, Zhao H, Zhang F. Effect of both puerarin and gypsum on the firing of pyrogen-treated thermosensitive neurons in the region POAH of anesthetized cats. Chung-Kuo Yung Sheng Li Hsueh Tsa Chih. 1997; 13 (1) : 71-4.
42.Lin RC, Guthrie S, Xie CY, Mai K, Lee DY, Lumeng L, Li TK. Isoflavonoid compounds extracted form Pueraria lobata suppress alcohol preference in a pharmacogentic rat model of alcoholism. Alcohol:Clin Exp Res. 1996; 20 (4) : 659-63..
43.Kang RX. The intraocular pressure depressive effect of puerarin.Chin J Ophthalmol.1993; 29 (6) : 336-9.
44.Fever: Basic Mechanisms and Management. Editred by Philip Mackowiak. Raven Press Ltd, New York. 1991; 1-22.
45.Brodie BB, Shore AA. The concept for a role of serotonin and norepinephrine chemical mediators in the brain. Ann NY Acad Sci. 1957; 66 : 631-42.
46.Von EC. Physiology and pharmacology of temperature regulation. Pharmacol Rev. 1961; 13 : 361-98.
47.Myers RD. Hypothalamic control of thermoregulation.Neurochenical mechanisms. In Morgane PJ, Panksepp J (eds). Handbook of the Hypothalamus. Dekker. New York. 1980; 3 : 83-212.
48.Gorden CJ. Thermal biology of the laboratory rats. Physiol Behav. 1991; 47 : 963-91.
49.Lin MT. Effects of brain monoamine depletions on thermoregulation in rabbits. Am J Physiol. 1980; 364-71.
50.Fernadez GA, Lopez RC, Perez UJ, Castaneda HG. Evidence for a postsynaptic action of the serotoninergic anxiolytics:ipsapirone, indoranate and buspirone. Brain Res Bull 1992; 28: 497-501.
51.Frankfurt M, Mendelson SD, Mckittrick CR, Mcewen BS. Alterations of serotonin receptor binding in the hypothalamus following acute denervation. Brain Res 1993; 601: 349-52.
52.Hsieh MT, Chueh FY, Lin MT. Magnolol decreases body temperature by reducing 5-hydroxytryptamine release in the rat hypothalamus. Clin Exp Pharmacol Physiol. 1998; 25: 813-7.
53.Emile Z, Gilles F. 5-hydroxytryptamine receptor. Am Pharmacol Exp Therap. 1992; 44 (3) : 401-58.
54.Scott PA, Chou JM, Tang H, Frazer A. Differntial induction of 5-HT1A-mediated responses in vivo by three chemically dissimilar 5-HT1A agonists. J Pharmacol Exp Therap. 1994; 270 (1) : 198-208.
55.Hjorth S, Carlsson A, Lindberg P, Sanchez D, Wikstrom H, Arvidsson L-E, Hacksell U, Nilsson JLG. 8-Hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT, a potentand selective simplified ergot congener with central 5-HT-receptor stimulating activity. J Neural Transm. 1982; 55: 169-88.
56.Middlemiss DN, Fozard JR. 8-Hydroxy-2-(di-n-propylamino)tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol. 1983; 90: 151-3.
57.Goodwin GM, De Souza RJ, Green AR. The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT): a model of presynaptic 5-HT1 function. Neuropharmacology. 1985; 24: 1187-94.
58.Gudelsky GA, Koenig JI, Meltzer HY. Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rats. Neuropharmacology. 1986; 25: 1307-13.
59.Hjorth S. Hypothermia in the rat induced by the potent serotoninergic agent 8-OH-DPAT. J Neural Transm. 1985; 61: 131-5.
60.Hutson PH, Donohoe TP, Curzon G. Hypothermia inducecd by the putative 5-HT1A agonist LY 165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur J Pharmacol. 1987; 143: 221-8.
61.Cooper JR, Bloom FE, Roth RH. The biochemical Basis of Neuropharmacology. 1996; 353-407.
62.Martin KF, Phillips I, Hearson M, Prow MR, Heal DJ. Charaterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identtify antidepressions. Br J Pharmacol. 1992; 107: 15-21.
63.Millan MJ, Rivet JM, Canton H, Le S, Girardon M, Goe.A. Induction of hypothermia as a Model of 5-Hydroxytryptamine 5-HT1A receptor-mediated activity in the rats: A pharmacological characterization of the actions of novel agonists and antagonists. J Pharmacol Exp Therap. 1993; 264 (3) : 1364-76.
64.Bill DJ, Knight M, Forster EA, Fletcher A. Direct evidence for an important species difference in the mechanism of 8-OH-DPAT-induced hypothermia. Br J Pharmacol. 1991; 103: 1857-64.
65.Nash JF, Meltzer HY, Gudelsky GA. Antagonism of receptor mediated neuroendocrine and temperature responses by atypical neuroleptics in the rat. Eur J Pharmacol. 1988; 151: 463-9.
66.Salmi P, Karlsson T, Ahlenius S. Antagonism by SCH 23390 of clozapine-induced hypothermia in the rat. Eur J Pharmicol. 1994; 253: 67-73.
67.Yamanaki S, Lai H, Horita A. Dopaminergic and serotonergic mechanisms of thermoregulation: mediation of thermal effects of apomorphine and dopamine. J Pharmacol Exp Therap. 1983; 227: 383-8.
68.Mazzolai-Pomietto P, Aulakh CS, Wozniak KM, Hill JL, Murphy DL. Evidence that 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia in rats is mediated by stimulation of 5-HT2A receptors. Psychopharmacology. 1995; 117: 193-9.
69.Peter S, Sven A. Evidence for function interactions between 5-HT1A and 5-HT2A receptor in rats thermoregulatory mechanisms. Pharmacol Toxicol. 1998; 82: 122-7.
70.Charanjit SA, Pascale MP, Krystyna MW, James LH, Dennis LM. Evidence that 1-(2,5-dimethoxy-4-methylphenyl)-2-amino-propane-induced hypophagia and hyperthermia in rats is mediated by serotonin-2A receptors. J Pharmacol Exp Ther. 1994; 270: 127-32.
71.Hoyer D, Schoeffter P. 5-HT receptors: Subtypes and second messengers. J Recet Res. 1991; 11: 197-214.
72.Alhaider AA. New hybrids of quipazine and trazodone as selective inhibitors of uptake of 5-hydroxytryptamine. J Pharm Sci. 1992; 81 (1) : 99-103.
73.Apud JA, Grayson DR, De Erausquin E, Costa E. Pharmacological characterization of regulation of phosphorinositide metabolism by recombinant 5-HT2 receptors in rat. Neuropharmacology. 1992; 31: 1-8.
74.Conn PJ, Sanders-Bush E. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding sites in rat cerebral cortex but not in subcortical regions. J Pharmacol Exp Ther. 1985; 234: 195-203.
75.Cory RN, Rouot B, Guillon G, Sladeczek F, Balestre MN, Bockaert J. The 5-hydroxytrptamine (5-HT2) receptor stimulates inositol phosphate formation in intact and broken WRK1 cells: Determination of occupancy-response relationships for 5-HT agonists. J Pharmacol Exp Ther. 1987; 241: 258-67.
76.Glennon RA & Luncki I. Behavioral models of serotonin receptor activation. In : the Serotonin Receptors, ed. by E Sanders-Bush. pp. 253-93, Humana Press Clifton, 1988..
77.Pawlowski L. Amitriptyline and femoxetine, but not clomipramine or citalpram, antagonize hyperthermia induced by directly acting 5-hydroxytryptamine-like drugs in heat adapted rats. J Pharm Pharmacol. 1984; 36: 197-9.
78.Boulant JA. Thermoregulation. Fever: basic mechanisms and management. Raven Press. New York. 1991; 1-22.
79.Fontana A, Weber E, Dayer JM. Systhesis of interleukin-l endogenous pyrogen in the brain of endotoxin-treated mice: A step in fever induction. J Immunol. 1984; 133: 1696-8.
80.Saigusa T. Participation of interleukin-1 and tumor necrosis factor in the responses of the sympathetic nervous system during lipopolysaccharide-induced fever. Pflugers Archiv 1989; 416: 225-9.
81.Bouchama A, Parhar RS, Yazigi AE, Sheth K, Sedairy SA. Endotoxin and release of tumor necrosis factor and interleukin-1 in acute heat stroke. J Appl Physiol.1991; 70: 2640-4.
82.Cannon JG, Tompkins RG, Gelfand JA. Circulating interleukin-1 and tumor necrosis factor in septic shock and experiment endotoxin fever. J Infect Dis. 1990; 161: 79-81.
83.Lin MT, Chandra A, Tsay BL, Chern YF. Intracerebroventricular injection of symphathomimetic drugs inhibit both heat production and heat loss mechanisms in the rat. Can J Physiol Pharmacol. 1980; 58: 896-902.
84.Rietschel ET, Brade H. Bacterial Endotoxins. Sci Am. 1992; 8: 54-61.
85.Kent S, Bluthe RM, Kelley KW, Dantzer R. Sickness behavior as a new target for drug development. Trends Pharmacol Sci. 1992; 13: 24-8.
86.Yirmiya R. Endotoxin produces a depressive like episode in rats. Brain Res. 1996; 711: 163-8.
87.Rothwell NJ, Hopkins SJ. Cytokines and the nervous system II:actions and mechanisms of actions. Trends Neurosci. 1995; 18: 130-6.
88.Rothwell NJ. CNS regulation of thermogenesis. Citrc Rev Neurobiol; 1994; 8: 1-10.
89.Rietschel E, Kirikae T, Schade U et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994; 8: 217-25.
90.Dascombe MJ. The pharmacology of hyperthermia. Prog Neurobiol. 1985; 25: 327-73.
91.Ohlsson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature. 1990; 348: 550-2.
92.Dinarello CA, Cannon JG, Wolff SM. New concepts on the pathogenesis of fever. Rev Infect Dis. 1988; 10: 168-89.
93.Dinarello CA. Endogenous pyrogens: the role of cytokines in the pathgenesis of fever. In: Mackowiak PA, ed. Fever: basic mechanisms and management. Raven Press. New York. 1991; 23-48.
94.Kluger MJ. Role of pyrogens, cryogen. Physiol Rev. 1991; 71: 93-127.
95.Breder CD, Dinarello CA, Saper CB. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science. 1988; 240: 321-3.
96.Lechan RM, Toni R, Clark BD, Cannon J G, Shaw AR, Dinarello CA, Reichlin S. Immunoreactive interleukin-1b localization in the rat forebrain. Brain Res. 1989; 514: 135-40.
97.Blatteis CM. Neural mechanisms in the pyrogenic and acute phase responses to interleukin-1. Int J Neurosci. 1988; 38: 223-32.
98.Rothwell NJ. Mechanisms of the pyrogenic effects of cytokines. E Cytokin Network. 1990; 1: 211-3.
99.Busbridge NJ, Dascombe MJ, Tilders FJH. Central activation of therrnogenesis and fever by interleukin-lb and interleukin-la involves different mechanism. Biochem Biophys Res Commun 1989; 162: 591-6.
100.Opp MR, Krueger JM. Interleukin-1 receptor antagonist blocks interleukin-1-induced sleep and fever. Am J Physiol. 1991; 260: 453-7.
101.Cunningham ET, De Souza EB. Interleukin 1 receptors in the brain and endocrine tissures. Immunol Today. 1993; 14: 171-6.
102.Rzymeiewicz DM, DuMaine J, Morrison AR. IL-1b regulates rat mesangial cyclooxygenase II gene expression by tyrosine phosphorylation. Kidney Int. 1995; 47: 1354-63.
103.Akio M, Naotoshi M, Yoshiyuki S. Functional and structural difference in febrile mechanism between rabbits and rats. J Physiol (London) 1990; 427: 227-39.
104.Futoshi S, Shigenobu K. Interleukin-1b augments release of norepinephrine, dopamine and serotonin in the rat anterior hypo-thalamus. J Neurosci. 1993; 13: 3574-81.
105.Carmelina G, Pietro G, Maria GD. Activation of the hypothalamic serotoninergic system by central interleukin-1. Eur J Pharmacol. 1991; 209: 139-40.
106.Mohankumar PS, Thyagarajana S, Quadri SK. Interleukin-1b increases 5-hydroxyindoleacetic acid release in the hypothalamus in vivo. Brain Res Bull. 1993; 31: 745-8.
107.Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclo-oxygenase enzymes. Proc Natl Acad Sci USA. 1993; 90: 7240-4.
108.Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43: 109-42.
109.Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines aross the blood-brain barrier. Neuroimmunomodulation. 1995; 2: 241.
110.Mccann SM, Rettori V. The role of nitric oxide in reproduction. Proc Soc Exp Med. 1996; 211: 7-15.
111.Mcdonald LJ, Murad F. Nitric oxide and cyclic GMP signling. Proc Soc Exp Biol Med. 1996; 211: 1-6.
112.Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron 1992; 8: 3-11.
113.Kandasamy SB, Williams BA. Central effects of dibutyrl cyclic AMP and GMP on the temperature in conscious rabbits. Brain Res. 1983; 277: 311-20.
114.Boje KM, Arora PK. Microglia-produced nitric oxide and reactive nitrogen oxide mediate neuronal cell death. Brain Res. 1992; 587: 250-6.
115.Mollace VM, Colasanti M, Rodino P, Massoud R, Lauro GM, Nistico G. Cytokine-induced nitric oxide generation by cultured astrocytoma cells involves Ca2+/calmodulin-independent NO-systhase. Biophys Res Commyun. 1993; 191: 327-34.
116.Vigne P, Damais C, Frelin C. IL-1 and TNFa induce cGMP formation in C6 astrocuytoma cells via the nitridergic pathway. Brain Res. 1993; 606: 332-4.
117.Simmons ML, Murphy S. Cytokines regulate L-arginine-dependent cyclic GMP production in rat glial cells. Eur J Neurosci. 1993; 5: 825-31.
118.Reimers JI, Bjerre U, Mandrup-Poulsen T, Nerup J. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases. Cytokine. 1994; 6: 512-20.
119.Canteros G, Rettori V, Franchi A, Genaro A, Cebral E, Faletti A, Gimeno M, Mccann SM. Ethanol inhibits lutenizing hormone-releasing hormone (LHRH) secretion by blocking the response of LHGH neuronal terminals to nitric oxide. Proc Natl Acad Sci. 1995; 92: 3416-20.
120.Milton AS, Wendlandt S. A possible role for prostaglandin E1 as a modulator for temperature regulation in the central nervous system of the cat (abstract). J Physio (Lond). 1970; 207: 76-7.
121.Milton AS, Wendlandt S. Effects on body temperature of prostaglandins of the A, E and F series on injection into the third ventricle of unanaesthetized cats and rabbits. J Physiol (Lond). 1971; 218: 325-36.
122.Smith WL, Marnett LJ, Dewitt D. Prostaglandin and throboxane biosynthesais. Pharmacol Ther. 1991; 49: 153-79.
123.Cranston WI, Duff GW, Hellon RF, Mitchell D, Townsend Y. Evidence that brain prostaglandin synthesis is not essential in fever. J Physiol 1976; 259: 239-49.
124.Oka T, Hori T. EP1-receptor mediatior mediation of prostaglandin E2-induced hyperthermia in rats. Am J Physiol. 1993; 267: R289-94.
125.Sirko S, Bishai I, Coceani F. Prostaglandin formation in the hypothalamus in vivo : effect of pyrogens. Am J Physiol. 1989; 256: R616-24.
126.Lin MT, Wu JJ, Chandra A, Tsay BL. A nore-pinephrine-cyclic AMP link in the hypothalamic pathways which mediate fever induced by endotoxin and prostaglandin E2 in the rat. J Pharmacol Exp Therap. 1982; 222: 251-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top