跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊承
研究生(外文):Chun-Cheng Wang
論文名稱:斷層運動造成上覆土層破裂之數值模擬
論文名稱(外文):Numerical Simulation of Rupture Propagation through A Overlying Soil Layer Due to Fault Movement
指導教授:葛德治葛德治引用關係
指導教授(外文):Te-Chich Ke
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:59
中文關鍵詞:斷層DDAD
外文關鍵詞:faultDDAD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣位於歐亞板塊與菲律賓板塊的交界,造成地震經常發生。多數的地震是由斷層錯動所造成的。斷層的錯動使得上覆土層破裂,震波也同時經由介質從震央向外傳遞。既然地震會釀成巨大的災變,研究此類的問題對居住於台灣島上的民眾是相當重要的,尤其在九二一大地震之後更突顯問題的重要性。
1995年葛德治博士與Bray發展出一個不連續變形分析之顆粒版程式(DDAD),這個程式的理論是依據最初Shi所創造出來的不連續變形分析(DDA)。DDAD程式在分析複雜的粒狀材料具有多功能的用途。本論文以DDAD程式作為斷層運動造成上覆土層破裂之數值模擬,方法是在一個由固定邊界及可移動邊界所組成的剛性盒內放置3288顆圓盤來模擬。
數值模擬的結果整理後定出上覆土層因斷層所形成的錯動面的外形與位置。比較本論文的模擬結果,發現跟Lade與Cole在1984年所得的實驗及理論結果近似,評估認為不連續變形分析法應可用於分析斷層的相關問題,本研究並且為斷層運動的模擬建立一個值得參考的模式。

Taiwan is located at a complex juncture between the Eurasian Plate and Philippines Sea Plate which makes for geological characteristics that resulted in a more dynamic dislocation of crusts, so earthquakes occur frequently. Most of earthquakes initiated due to fault movements. The rupture propagation through overlying soil or rock layer is resulted from fault movement, and seismic waves will propagate outward from the epicenter by some medium at the same time. Since earthquake can be catastrophic events, to study this class of problem is very important for people to live in Taiwan, especially after the 21 September 1999 Chi-chi earthquake.
In 1995, Ke and Bray developed a discontinuous deformation analysis code for disks, DDAD, which was initially derived from the discontinuous deformation analysis, DDA, by Shi. DDAD code is a versatile tool for modeling the complex behavior of granular material. In this paper, DDAD code is used to model rupture propagation through overlying soil layer due to fault movement by 3288 disks within a rigid box, which is composed of a fixed boundary and a movable boundary.
Numerical simulation results have been synthesized to define the shape and location of rupture surfaces of overlying soil layer. It is found that our results from numerical simulation are approximate the experimental and theoretical results performed by Lade and Cole in 1984. Hence, our results from numerical simulation suggest that the discontinuous deformation method can be successfully applied to this class of problem, and a desirable mode established to simulation the problem of fault movements in this study.

CHINESE ABSTRACT
ENGLISH ABSTRACT
CONTENTS
LIST OF FIGURES
1 INTRODUCTION
1.1 Motivation and Purpose
1.2 Research Approach and Scope
1.3 Thesis Format and Content
2 LITERATURE REVIEW OF PREVIOUS STUDIES ON RUPTURE PROPAGATION DUE TO FAULT MOVEMENT
2.1 Introduction
2.2 Influence Factors of Fault Rupture Propagation
2.3 Types of Fault Movement
2.3.1 Trust Faulting
2.3.2 Normal Faulting
2.3.3 Strike-Slip faulting
2.4 Physical Model of Fault Rupture Propagation
2.5 Numerical Model of Fault Rupture Propagation
3 ANALYSIS TOOL — DDAD CODE
3.1 Introduction
3.2 Summary of DDAD method
3.3 Applications and Examples
4 NUMERICAL SIMULATION OF SOIL LAYER RUPTURING DUE TO FAULT MOVEMENT
4.1 Introduction
4.2 Numerical Model
4.3 Presentation of analysis Results
4.4 Discussions
5 CONCLUSIONS AND SUGGESTIONS
5.1 Concluding remarks
5.2 Suggestions for Future Research
REFERENCES
APPENDIX A DDAD INPUT DATA

1 Bilham R. and Yu T.-T. (2000) “The morpgology of thrust faulting in the 21 September 1999, Chichi, Taiwan earthquake,” Journal of Asian Earth Sciences. Vol. 18, pp. 351-367
2 Bonilla, M.G., 1997. Summary of Quarternary faulting and elevation changes in Taiwan. Mem. Geol. Soc. China 2, 43-55.
3 Bonilla, M. G. (1998). “Faulting and Seismic Activity.” In The Heritage of Engineering Geology: The First Hundred Years. Ed. G. A. Kiersch. Boulder, Colorado, Geological Society of America, Centennial Special Volume 3.
4 Bray J. D. (1990). “The Effect of Tectonic Movements on Stresses and Deformations in Earth Embankments,” Ph.D. dissertation, Dept. of Civ. Engrg., Univ of California, Berkeley, pp. 4-5, 110-114.
5 Briggs, H. (1929). Mining Subsidence. London: Edward Arnold & Co.
6 Cheng, Shih.-Nan, Yeong, Tein Yeh, Ming-Tung, Hsu, Tzay-Chyn, Shin, 1999. Photo Album of ten Disastrous earthquakes in Taiwan, CWB-9-1999-002-9. Central Weather Bureau and the Institute of Earth Sciences, Academia Sinica Tapei, 289 pp.
7 Cluff, L. S. (1988). Discussion of the General Behavior of Soil and Rock During Fault Movement, Private Communication.
8 Cluff, L. S., Slemmons, D. B. and Waggoner, E. B. (1970). “Active Fault Zone Hazards and Related Problems of Siting Works of Man,” Proceedings of the Symposium on Earthquake Engineering, Indian Society of Earthquake Technology, University of Roorkee, Roorkee, November 14-16, pp. 401-410.
9 DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., 1990. Current plate motions. Geophys. J. Int. 101, 425-478.
10 Emmons, R. C., “Strike-slip rupture patterns in sand models,” Tectonophysics, Elsevier Publishing Company, Vol. 7, No. 1, Amsterdam, the Netherlands, 1969, pp. 71-87.
11 Ke, T.-C., and Bray, J. 11/1995. “Modeling of particulate media using Discontinuous Deformation Analysis,” J. Engineering Mechanics, ASCE, Vol. 121, No.11: 1234-1243.
12 Ke, T.-C., and Chen, Y.-C. 2000, “Interaction analysis of falling rocks and flexible protection structures,” to be submitted to Rock Mech. & Rock Engrg.
13 Lade, P. V. and Cole, D. A., Jr. (1984). “Influence Zones in Alluvium Over Dip-Slip Faults,” Journal of Geothchnical Engineering, ASCE, Vol. 110, No. 5, May, pp. 599-615.
14 Lade, P. V., Cole, D. A., Jr. and Cummings, D. (1984). “Multiple Failure Surfaces Over Dip-Slip Faults,” Journal of Geothchnical Engineering, ASCE, Vol. 110, No. 5, May, pp. 616-627.
15 Louderback, G. D. (1937). “Characteristics of Active Faults in the Central Coast Ranges of California, with Application to the Safety of Dams,” Bulletin of the Seismological Society of America, Vol. 27, No. 1, January, pp. 1-27.“Multiple Failure Surfaces Over Dip-Slip Faults,” Journal of Geothchnical Engineering, ASCE, Vol. 110, No. 5, May, pp. 616-627.
16 Patricia, A. T., Bray, J. D., and Ke, T.-C., 6/1996, “Discontinuous deformation analysis for soil mechanics,” Proc. 1st Intl. Forum on Discontinuous Deformation Analysis, Berkeley, Calfornia, USA: 454-461
Scott, R. F., and Schoustra, J. J. (1974). “Unclear Power Plant Siting on Deep Alluvium,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT4, April, pp. 449-459.
17 Shi, G.-H., and Goodman, R. E. (1984). “Discontinuous deformation analysis.” Proc., 25th U.S. Symp. on Rock Mech., C. H. Dowding and M. M. Singh, eds., Soc. of Min. Engrs. of the Am. Inst. of Min. Metallurgical and Petroleum Engrs., Inc., New York, N. Y., 269-277.
18 Shi, G.-H. (1988). “Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block systems,” Ph.D. dissertation, Dept. of Civ. Engrg., Univ. of California, Berkeley.
19 Taylor, C. L. and Cluff, L. S. (1977). “Fault Displacement and Ground Deformation Associated with Surface Faulting,” ASCE Specialty Conference on Lifeline Earthquake Engineering, Los Angeles, pp. 338-353.
20 Ugural A. C. and Fenster S. K. (1995). “Advanced Strength and Applied Elasticity,” 3rd ed., Prentice-Hall, Inc., New Jersey, pp. 58-61.
21 Wu, C.-L., and Ke, T.-C., 11/1998, “The Effect of Foundation Ratio on the Bearing Behavior Numerical Study,” Proc. 13th Southeast Asian Geotechnical Conference, Taipei: 837-842.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top