跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田國興
論文名稱:有設置時間之流程型工廠多階段平行機台總排程時間最小化問題
論文名稱(外文):A Multi-stage Parallel-processor Flowshop Problem with Setup Time
指導教授:蘇玲慧蘇玲慧引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:工業工程學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:64
中文關鍵詞:流程型工廠多階段平行機台排程設置時間總排程時間
外文關鍵詞:FSMPschedulingparallelsetup timemakespanTransportation
相關次數:
  • 被引用被引用:26
  • 點閱點閱:759
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:1
在封裝測試製程中,工件經由各製程(工作站)加工依序完成製品,而每一個製程中有一到多台不同數目之機器。決策者為了達成提昇系統績效的目標,無不希望使產出時間(Throughput Time)儘量降低,亦即使總排程時間(Makespan)最少,但因為工作進入各製程之機器加工時間包含設置時間(Setup Time)與加工時間(Processing Time),由於封裝測試製程之設置時間長,因此吾人希望工作在某一機台加工,直到完成。不過如此往往又會使某一機台的負荷較重,同時會使得工作在此機台之完成時間較晚,影響後面製程,而使得總完成時間延後。因此在增加設置時間與機台負荷均衡及降低總完成時間最小之兩相平衡點上,決定工作在同一製程中如何分散至其他機台為本研究第一步要達成之目標。本研究針對此問題以運輸問題模式求解。如果一工作分派至同一製程上之不同機台,則加工時間需再加上此工作在此機台之設置時間。
在流程型工廠(Flowshop)中,決策者為提昇系統績效,除決定各工件應排在各製程之那一部機台外,必須再考慮使總排程時間為最小,所以第二個目標為決定工件進入製程加工的順序以便總排程時間為最小。本研究擬提出啟發式方法迅速有效地求解,以期在不同工件數、工作站數、和機器負荷率下,得到較佳的總排程時間。
In IC Packing industry, the independent jobs are scheduled on several serial workshops consisting of identical or different parallel machines . Each job is processed by one machine in each workshop. This workshop environment is called a flowshop with multi-processors(FSMP). Each job has processing time and setup time and the objective is to minimize makespan which is to shorten the throughput time effectively. This problem is NP-complete. Since the setup time involved, it is hoped to operate the job in the same machine until the job is finished. However, this operation results the heavy burden on some machine and late completion time of the job, and therefore delay the makespan. Therefore, how to trade off between setup time decreases and machine burden increases is one of the goal of our study. The Transportation method is adopted to solve the problem. In the model, the production quantity of the job is treated as the supply, the machine burden is the demand and the processing time of the job on the specific machine is transportation cost. If one specific job is processed on different machine, the setup time is added to the transportation cost.
In addition to have the work loads of parallel machines, therefore, we also like to minimizing the makespan in order to shorten the throu- ghput time. Some heuristics based on Nawaz Heuristic, CDS Heuristic and Palmer’s Method are presented for this purpose.
目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1. 1 研究背景與動機 1
1. 2 研究目的 3
1. 3 研究步驟與方法 3
1. 4 論文基本架構 4
第二章 文獻探討 5
2. 1 排程問題概述 5
2. 2 線性規畫之運輸問題介紹 8
2. 2. 1 符號說明 8
2. 2. 2 線性規畫模式 9
2. 3 多階段平行機台排程相關文獻 10
2. 3. 1 The Nawaz Heuristic 11
2. 3. 2 The Campbell, Dudek, and Smith (CDS) Procedure 11
2. 3. 3 Palmer’s Method 13
2. 3. 4 Gupta’s Method 13
2. 3. 5 Dannenbring’s Method 13
第三章 啟發式演算法 20
3. 1 研究方法之架構 20
3. 2 基本假設 21
3. 3 應用運輸問題求解手法於本研究之總加工時間 21
3. 3. 1 模式建立與求解 22
3. 3. 2 簡例說明 22
3. 4 發展派工法則 26
3. 4. 1 介紹派工方法(一) 26
3. 4. 1. 1 派工方法(一)之細部流程圖 28
3. 4. 1. 2 派工法則(一)之簡例說明 30
3. 4. 2 介紹派工方法(二) 36
3. 4. 2. 1 派工方法(二)之細部流程圖 38
3. 4. 2. 2 派工方法(二)之簡例說明 39
第四章 模擬結果與分析 42
4. 1 模式建構 42
4. 2 模式作業環境 43
4. 3 模式資料設定 43
4. 4 衡量指標 43
4. 4. 1 全域下界法(Global Lower Bound)之介紹 44
4. 5 實驗設計 46
4. 6 模擬與結果探討 48
4. 6. 1 資料設定與求解 48
4. 6. 2 模擬結果探討 54
第五章 結論與未來展望 58
5. 1 結論 58
5. 2 未來展望 59
參考文獻 60
作者簡介………………………………………………………………..64
Brah, S. A., Hunsucker, and J. L., 1991, “Branch and Bound Algorithm for The Flowshop with Multiple Processors,” European Journal of Operational Research, 51, pp. 88-99。
Campbell, H. G., Dudek, R. A., and Smith M.L., 1970, “A Heuristic Algorithm for the ‘N’ Job ‘M’ Machine Sequencing Problem,” Management Science, 16, pp. 630-637。
Dannenbring D. G., 1977, “An Evaluation of Flow Shop Sequencing Heuristics,” Management Science, 23(11), pp. 1174-1182。
Garey M. R. and Johnson D. S., 1979, “Computers and Intractability: A Guide to the Theory of NP-completeness,” Freeman, San Francisco。
Gupta J. N. D. and Tunc. E. A., 1991, “Schedules for a Two —Stage Hybrid Flowshop with Parallel Machines at the Second Stage,” Int. J. Product. Res., 29, pp. 1489-1502。
Gupta J. N. D., 1971, “A Functional Heuristic Algorithm for the Flowshop Scheduling Problem,” Operational Research Quarterly, 22, pp. 39-47。
Gupta J. N. D., 1988, “Two-Stage, Hybrid Flowshop Scheduling Problem,” J. Oper. Res. Soc., 39, pp.359-364。
Gupta J. N. D., 1972, “Optimal Scheduling in Multistage Flowshop,” AIIE Transactions, 4, pp. 238-243。
Hundal, T. S., Rajgopal, J., 1988, “An Extension of Palmer’s Heuristic for the Flow-shop Scheduling Problem,” International Journal of Production Research, 26 (6), pp. 1119-1124。
Jacques Carlier, Ismaïl Rebaï, 1996, “Two Branch and Bound Algorithms for the Permutation Flow Shop Problem,” European Journal of Operational Research, 90, pp. 238-251。
Johnny C. Ho and Yih-Long Chang, 1991, “A New Heuristic for the N-job, M-machine Flow-shop Problem,” European Journal of Operational Research, 52, pp. 194-202。
Johnson S. M., 1954, “Optimal Two- and Three- Stage Production Schedules with Setup Times Included,” Nav. Res. Logist. Q., 1,pp. 61-68。
Kochlar, S., Morris, R. J. T., 1987, “Heuristic Methods for Flexible Flow Line Scheduling,” Journal of Manufacturing Systems, 6(4), pp. 299-314.
Nawaz, M., 1983, “A Heuristic Algorithm for the ‘M’-Machine, ‘N’ Job Flow-Shop Sequencing Problem,” Management Science, 11(1), pp. 91-95。
Nowicki E. and Czeslaw S., 1998, “The flow shop with parallel machines:A tabu search approach,” European Journal of Operational Research, 106, pp. 226-253。
Palmer D. S., 1965, ‘‘Sequencing Jobs Through A Multiple-Stage Process in The Minimum Total Time—A Quick Method of Obtaining a Near Optimum,” Opers Res. Q., 16, pp. 101-107。
Park T., Steudel H. J., 1991, “Analysis of Heuristics for Job Sequencing in Manufacturing Flow Line Work-cells,” Computers & Industrial Engineering, 20, pp. 129-140。
Rajendran, C., 1994, “A Heuristic for Scheduling in Flowshop and Flowline-based Manufacturing Cell with Multi-criteria,” Inter- national Journal of Production Research, 32(11), pp. 2541-2558。
Rajendran, C., Chaudhuri, D., 1992, “A Multi-stage Parallel-processor Flowshop Problem with Minimum Flowtime,” European Journal of Operational Research, 57, pp. 111-122。
Salvador. M. and S.,1973, “ A Solutioln to A Special Case of Flowshop Scheduling Problems,” Symposium of the Theory of scheduling and Applications。
Santos D. L., Hunsucker J. L. and Deal. D. E., 1995, “Flowmult: Permutation Sequences for Flow Shops with Multiple Processors,” J. Inform. Optim. Sci., 16, pp. 351-366。
Santos D. L., Hunsucker J. L. and Deal. D. E., 1995, “Global Lower Bounds For Flow Shops with Multiple Processors,” Eur. J. Oper Res., 80, pp. 112-120。
Santos D. L., Hunsucker J. L. and Deal. D. E., 1996, “An Evaluation of Sequencing Heuristics in Flow Shops with Multiple Processors,” Computers ind. Engng, 30(4), pp. 681-692。
Sridhar, J., Rajendran, C., 1993, “Scheduling in A Cellular Manufacturing System: A Simulated Annealing Approach,” International Journal of Production Research, 31(12), pp. 2927-2945。
Sule D. R., Huang K. Y., 1983, “Sequency on Two and Three Machines with Setup, Processing and Removal Times Separated,” International Journal of Production Research, 21, pp. 723-732。
Wittrock, R. J., 1988, “ An Adaptable Scheduling Algorithm for Flexible Flow Lines,” Operations Research 33 (4), pp. 445-453。
Yang B. P., C. Dennis Pegden, and E. Emory Enscore, 1984, “A Survey and Evaluation of Static Flowshop Scheduling Heuristics,” Int. J. Res., 22(1), pp. 127-141。
Yoshida T., Hitomi K., 1979, “Optimal Two-Stage Production Scheduling with Setup Times Separated,” AIIE Transaction, 11, pp. 261-263.
王立志, 1994, “現場排程簡介,” 東海大學工業工程系。
林宏澤、林清泉, 1991, “系統模擬,” 高立圖書有限公司。
徐盛宏, 1997, “群組技術於晶圓廠佈置之應用,” 私立中原大學工業工程研究所碩士論文。
陳建良, 1995, “排程概述,” 機械工業雜誌, pp.122-133,12月。
陳國偉, 1997, “平行-串連流程工廠中總延遲時間最小化之研究:IC封裝作業之應用,” 國立雲林科技大學工業工程與管理研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top