跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳淵翔
研究生(外文):Y. S. Chen
論文名稱:基於線性同餘之新階層存取控制研發
論文名稱(外文):New Schemes of Hierarchy Access Control Based on Linear Congruence
指導教授:涂世雄涂世雄引用關係賴玲瑩
指導教授(外文):S. H. TwuL. Y. Lai
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:65
中文關鍵詞:階層存取線性同餘安全層級
外文關鍵詞:hierarchy access controllinear congruencesecurity class
相關次數:
  • 被引用被引用:5
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
在本論文中,我們提出了四個階層存取控制新方案。在前兩個方法中,我們利用數論中線性同餘的觀念來加密高階層的金匙,並和低階層的金匙經互斥或的運算以產生公開參數。在這兩個方法中,我們設計了兩個單向函數來達成保密高階層金匙的目的,並且藉由公開參數和自己的秘密金匙,我們可以很輕易的推出下階層金匙並取得資料。
有別於前兩個方案,在第三和第四個方法中,首先我們利用高階層的金匙加密低階層的金匙,其結果再和高階層的秘密金匙做運算以產生公開參數。由於我們是最後才用高階層的金匙作加密來產生公開參數,所以當低階層想進行攻擊時,他所能得到的已知數就變的非常有限,如此便更能確保我們整個系統的安全性。
由於四個方法皆是使用簡單的線性同餘來設計單向函數,所以當插入、刪除層級或修改使用者秘密金匙時可以有效率的執行,並且我們方法只需要儲存一個秘密金匙和一些公開參數,因此儲存空間非常的少可以實際被運用。

Abstract
In this thesis, we propose four key management schemes for access control in user hierarchy whose operational complexity is based on linear congruence. In the first two schemes, the public information between two security classes with predecessor─successor relationship is generated as follows. At first, the secret key of the higher level class (predecessor) is encrypted by the one-way function based on linear congruence. Then, applying the bitwise XOR operation on the secret key of the lower level class (successor) and the encrypted secret key of the predecessor, the public information is generated. In this thesis, two one-way functions based on linear congruence are proposed by the authors. That is, we present two schemes under this idea. Via the public information generated as above procedure, the users in predecessor can derive the secret key of the successor. However, the users in the successor are not able to derive the secret key of the predecessor.
In the third and fourth schemes, we present a different idea from the first two schemes. In these two schemes, the secret key of the successor is encrypted by the secret key of the predecessor to promote the security. In the third scheme, initially, we produce a one-way function based on linear congruence to encrypt the secret key of the successor with the secret key of the predecessor. Then, the public information between the predecessor and successor is generated by applying the bitwise XOR operation on the secret key of predecessor and the result of the one-way function. In the fourth scheme, we present another one-way function based on linear congruence to encrypt the secret key of successor with the secret key of predecessor. Then, the public information between the predecessor and successor is given by the result of the one-way function. Similar to the first two schemes, via the public information generating processes as above, the secret key of the successor can be derived easily by the predecessor. On the other hand, the successor is not able to deduce the secret key of predecessor.
The most important feature of the proposed schemes is that the operational complexity of our methods is based on the linear congruence. By this characteristic, dynamic operations such as inserting a class, deleting a class, changing a key etc., can be implemented simply. Moreover, the required storage space is small because that it is necessary to store only one secret key and some public information for each security class.
Contents
AbstractI
List of FiguresIII
List of TablesIV
Chapter 1.Introduction
1.1Concepts of The User Hierarchy Access Control1
1.2Our New Schemes and Main Results5
1.3Organization of The Thesis8
Chapter 2.Background and Review of Some Existent Methods
2.1Concepts of Number Theory10
2.2Concepts of Cryptography15
2.3Review of Some Existent Methods on User Hierarchy Access Control19
Chapter 3.Our New Hierarchy Access Control Schemes Based on Linear Congruence
3.1The First New Scheme of Hierarchy Access Control Based on Linear Congruence26
3.2The Second New Scheme of Hierarchy Access Control Based on Linear Congruence35
3.3The Third New Scheme of Hierarchy Access Control Based on Linear Congruence43
3.4The Fourth New Scheme of Hierarchy Access Control Based on Linear Congruence51
Chapter 4Conclusions and Future Research58
References60

References
[1] S. G. Akl, and P. D. Taylor, “Cryptographic solution to a problem of access control in hierarchy,” ACM Transaction on computer systems, Vol. 1, No. 3, pp. 239-247, August 1983.
[2] S. J. MacKinnon, P. D. Taylor, H. Meijer and S. G. Akl, “An optimal algorithm for assigning cryptographic keys to access control in a hierarchy,” IEEE Transactions on computers, Vol. C-34, No. 9, pp.797-802, September 1985.
[3] L. Harn and H. Y. Lin, “A cryptographic keys generation scheme for multilevel data security,” Computers and Security, Vol. 9, pp.539-546, 1990.
[4] David M. Burton, Elementary Number Theory, 3rd ed., 1994.
[5] K. H. Rosen, Elementary Number Theory and It’s Applications, 3rd ed., Addison Wesley, 1992.
[6] W. Diffe and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Information Theory, Vol. IT-22, No. 6, pp. 644-654, November 1976.
[7] R. S. Sandhu, “Cryptographic Implementation of a tree hierarchy for access control,” Information Processing Letters, Vol. 27, No. 2, pp. 95─98, 1988.
[8] C. S. Laih and T. L. Hwang, “A branch oriented key management solution to dynamic access control in a hierarchy,” Proceedings of IEEE Symposium on Applied Computing, Kansas City, MO, pp. 422─429, 1991.
[9] C. C. Chang, R. J. Hwang and T. C. Wu, “Cryptographic key assignment scheme for access control in a hierarchy,” Information Systems, Vol. 17, No. 3, pp. 243─247, 1992.
[10] C. L. Lei, H. T. Liaw and S. Wang, “A dynamic cryptographic key assignment scheme in a tree structure,” Computers and Mathematics with Applications, Vol. 25, No. 6, pp. 109─114, 1993.
[11] G. Horng, “A key management approach for access control in user hierarchies,” Proceedings of International Computer Symposium, Hsinchu Taiwan, pp. 439─444, 1994.
[12] H. M. Tsai and C. C. Chang, “A cryptographic implementation for dynamic access control in a user hierarchy,” Computers and Security, Vol. 14, pp. 159─166, 1995.
[13] C. H. Lin, “Dynamic key management schemes for access control in a hierarchy,” Computer Communications 20, pp. 1381─1385, 1997.
[14] R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,” Communications of the ASM, Vol. 21, No. 2, pp. 120-126, 1978.
[15] 張榮宗, Research in Tree Hierarchy Access Control, 中原大學電機工程學系87學年度碩士論文.
[16] 賴溪松, 韓亮, 張真誠, 近代密碼學及其應用, 松岡電腦圖書資料股份有限公司, 1994.
[17] 楊吳泉, 現代密碼學入門與程式設計, 全華圖書科技, 1995.
[18] 張真誠,電腦密碼學與資訊安全, 松岡電腦圖書資料股份有限公司,pp. 131─148, 1989.
[19] M. O. Rabin, “Digitalized Signatures and Public-Key Functions As Intractable As Factorization,” Technical Report LCS/TR212, Cambridge MA:MIT.
[20]C. C. Chang and D. J. Buehrer, “Access control in a hierarchy using a one-way trapdoor function,” Computers and Mathematics with Applications, Vol. 26, No. 5, pp. 71─76, 1993.
[21]H. T. Liaw and C. L. Lei, “An optimal algorithm to assign cryptographic keys in a tree structure for access control,” BIT, Vol. 33, pp. 46─56, 1993.
[22]M. S. Hwang, “A cryptographic key assignment in a hierarchy for access control,” Mathematical and Computer Modeling, Vol. 26, No. 2, pp. 27─31, 1997.
[23]H. M. Tsai, S. Y. Kuo, C. L. Lei and C. C. Chang, “A dynamic cryptographic key assignment scheme in a tree structure for access control,” Proceedings of National Computer Symposium, pp. 553─559, 1993.
[24]H. T. Liaw, “A dynamic cryptographic key generation and information broadcasting scheme in formation systems,” Computers and Security, Vol.13, No. 7, pp. 601-610, 1994.
[25]T. C. Wu, T. S. Wu and W. H. He, “Dynamic access control scheme based on the Chinese remainder theorem,” Computer Systems Science and Engineering, Vol. 10, No. 2, pp. 92-99, April 1995.
[26]C. C. Chang, “An information protection system scheme based upon number theory,” The computer Journal, Vol. 30, No. 3, pp.249─253, 1987.
[27]C. C. Chang, J. K. Jan and D. J. Buehrer, “A scheme to determine the relationship between two users in a hierarchy,” Computers and Security, Vol. 13, pp. 255─261, 1994.
[28]J. K. Jan, C. C. Chang and S. J. Wang, “A dynamic key-lock-pair access control scheme,” Computers and Security, Vol. 10, No. 2, pp. 129─139, 1991.
[29]M. L. Wu and T. Y. Hwang, “Access control with single-key-lock”, IEEE Transactions on Software Engineering,” Vol. SE-10, No. 2, pp. 185─191, March 1984.
[30]D. E. Denning and F. B. Schneider, “Master keys for group sharing,” Information processing Letters, Vol. 12, No. 1, pp. 23─25, 1981.
[31]D. E. Denning, H. Meijer and F. B. Schneider, “More on master keys for group sharing,” Information processing Letters, Vol. 13, No. 3, pp. 125─126, 1981.
[32]N. Y. Lee and T. Hwang, “Remark on Chang-Buehrer access control scheme in a hierarchy,” Computers and Mathematics with Applications, Vol. 34, No. 12, pp. 11─12, 1997.
[33]T. S. Chen, H. C. Chu, Y. H. Hung, S. L. Wen and Y. C. Chung, “A novel access control scheme in a hierarchy,” The Tenth International Conference on Information Management, pp. 619─626, 1999.
[34]C. C. Cheng, S. W. Fan and M. Y. Chiou, “Cryptanalysis on an access control in a hierarchy,” Computers and Mathematics with Applications, Vol. 29, pp. 69─72, 1995.
[35]F. H. Kuo, V. R. L. Shen, T. S. Chen and F. Lai, “Cryptographic key assignment scheme for dynamic access control in a user hierarchy,” IEE Prec.-Computer and Digital Technique, Vol. 146, pp. 235─240, September 1999.
[36]S. J. Wang and J. F. Chang, “A hierarchy and dynamic group-oriented cryptographic scheme,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E79-A, pp. 76─85, 1996.
[37]B. M. Shao, J. J. Hwang and P. Wang, “Distributed assignment of cryptographic keys for access control in a hierarchy,” Computer and Security, Vol. 13, pp. 79─84, 1994.
[38]H. T. Liaw and C. L. Lei, “An efficient hierarchy scheme for determining relationships in information system,” Computers and Mathematics with Applications, Vol. 24, No. 11 pp. 71─78, 1992.
[39]R. L. Shen, T. S. Chen and F. Lai, “Novel cryptographic key assignment scheme for dynamic access control in user hierarchy,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E80-A, No. 10 pp. 2035─2037, October, 1997.
[40]R. L. Shen, T. S. Chen and F. Lai, “Modified cryptographic key assignment scheme for a group-oriented user hierarchy,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E80-A, No. 10 pp. 2032─2034, October, 1997.
[41]C. N. Yang and C. S. Laih, “A note on error-correcting codes for authentication and subliminal channels,” Information processing Letters, Vol. 62, pp. 141─143, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top