跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙士齊
研究生(外文):Shih-Chi Chao
論文名稱:偏光鏡的靈敏度分析
論文名稱(外文):Sensitivity analysis of a nonlinear optical beam deflector
指導教授:黃健生黃健生引用關係馮榮豐馮榮豐引用關係
指導教授(外文):Jeng-Sheng HuangRong-Fong Fung
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:50
中文關鍵詞:偏光鏡壓電陶瓷最佳化設計有限元素法靈敏度分析
外文關鍵詞:Optical beam deflectorBimorphOptimal designFinite element methodSensitivity analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本論文將探討線性與非線性的偏光鏡動態行為,此偏光鏡是由兩層壓電陶瓷中間夾著黃銅且兩邊固定,中間放一層薄薄的鏡子。描述動態行為的非線性的統御方程式可以由漢彌頓原理推導出來,並由此可觀察出偏光鏡受到電壓和分段電極的影響,就像是有受到外加的純力矩作用。有限元素法被應用於一個均勻樑受到同等外加純力矩作用下和此偏光鏡的動態行為作一比較,並且驗證了本文中的理論是正確有效的。為了得到最大的偏轉角度,對分段電極和厚度的比例作最佳化設計,可以求出最佳的比例長度。對鏡子和總長度的比例作靈敏度分析,取第二個模態特徵值來分析和預測,可以預測一個極為精準的特徵值。最後,對於有關非線性的動態模擬、最佳化設計和靈敏度分析,應用一個簡化的方式來節省電腦運算時間和簡化繁雜的數學式子。
ABSTRACT
This paper studies the linear and nonlinear dynamic behavior of the optical beam deflector, which is composed of two piezoelectric layers and one sandwiched brass layer with both ends clamped. The nonlinear equation describing the dynamic behavior is derived by Hamilton''s principle. An equivalent configuration of the optical beam deflector with external moments is obtained to analyze the effect of the applied voltage and split electrodes. The finite element method is employed to compare the dynamic responses with a uniform beam and to validate the theoretic analysis. The nonlinear optimization problems with respect to the electrode length ratio and thickness ratio are solved for the maximum deviation angle. The sensitivity of the second mode eigenvalue with respect to the length ratio of the mirror part to total length is performed. A simplified method for the dynamic response, optimal design and sensitivity analysis of the nonlinear system is proposed to save the computation time and avoid the complicated mathematics.
Contents
摘 要...................................................................I
Abstract.................................................................II
誌 謝..................................................................III
Contents................................................................IV
計畫緣由與目的................................................VI
研究方法與成果...............................................VII
討論與結論.......................................................VIII
Figure Caption......................................................IX
Table Caption.........................................................X
Nomenclature........................................................XI
1. Introduction.........................................................1
2. Dynamic Model Development............................3
2-1 Physical Model...............................................3
2-2 Equations of Motion ......................................3
2-2-1 Nonlinear Equations of Motion................3
2-2-1-1 Independent variables , and D...........4
2-2-1-2 Independent variables , and. .............8
2-2-1-3 Compare the two results....................9
2-2-2 Uniform Beam of Motion.......................10
3. Finite Element Formulation...............................12
4. Optimal Design.................................................15
5. Sensitivity Analysis...........................................17
5-1 Design Sensitivity.........................................17
5-2 Eigenvalue Sensitivity...................................18
6. Numerical Results.............................................20
6-1 Optimal Design.............................................20
6-2 Design Sensitivity Analysis...........................21
6-3 Eigenvalue Sensitivity....................................23
7. Conclusion.........................................................23
Acknowlegment.....................................................24
Reference................................................................24
Figure.....................................................................27
Table.......................................................................33
簡 歷....................................................................36
References
[1] Burke, S., and Hubbard, J., 1987, "Active Vibration Control of a Simple Supported Beam using a Spatially Distributed Actuator," IEEE Transactions on Control Systems Technology, Vol. 7, pp.25-30.
[2] Kim, S., and Jones, J., 1991, "A Study of Actuators for Active Control of Distributed Elastic System," in Proc. NOISE-CON, pp. 283-290.
[3] Sugaeara, Y., Onitsuka, K., Yoshikawa, S., Xu, Q., Newnham, R. E., and Uchino, K., 1992, "Metal-ceramic Composite Actuators," Journal of the American Ceramic Society, Vol. 75, pp. 996-998.
[4] Shaffer, J. J., and Fried, D. L., 1970, "Bender-Bimorph Scanner Analysis," Applied Optics, Vol. 9, pp. 933-937.
[5] Lee, J. K., 1979, "Piezoelectric Bimorph Optical Beam Scanners: Analysis and Construction," Applied Optics, Vol. 18, pp. 454-459.
[6] Montagu, J. I., 1985, in Laser Beam Scanning, Optomechanical Devices, Systems, and Data Storage Optics, Dekker, New York, Chapter 5.
[7] Montagu, J. I., 1991, in Optical Scanning, Dekker, New York, Chapter 10.
[8] Steel, M. R., Harrison, F., and Harper, P. G., 1978, "The Piezoelectric Bimorph: An Experimental and Theoretical Study of its Quasistatic Response," Journal of Physics D: Applied Physics, Vol. 11, pp. 979-989.
[9] Smits, J. G., Dalke, S. I., and Cooney, T. K., 1991, "The Constituent Equations of Piezoelectric Bimorphs," Sensor and Actuators A, Vol. 28, pp. 41-61.
[10] Wang, Q. M., and Cross, L. E., 1999, "Constitutive Equations of Symmetrical Triple Layer Piezoelectric Benders," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, pp. 1343-1351.
[11] Ono, T., 1990, "Optical Beam Deflector Using a Piezoelectric Bimorph Actuator," Sensors and Actuators, A 21-23, pp. 726-728.
[12] Bernard, M. L., 1994, "Modal Expansion Method for Eigensensitivity with Repeated Roots," AIAA Journal, Vol. 32, No. 7, pp. 1500-1506.
[13] Adhikari, S., 1999, "Rates of Change of Eigenvalues and Eigenvectors in Damped Dynamic System," AIAA Journal, Vol. 37, No. 11, pp. 1452-1458.
[14] Guo, N., and Cawley, P., 1992, "The Finite Element Analysis of the Vibration Characteristics of Piezoelectric Discs," Journal of Sound and Vibration, Vol. 159, pp. 115-138.
[15] Hatman, V. G., Haque, I., and Bagchi, A., 1996, "Dynamics of a Flexible Rotating Beam Interacting with a Flat Rigid Surface. Part I : Model development," Journal of Sound and Vibration, Vol. 194, pp. 653-669.
[16] Fung, R. F., Yao, C. M., and Tseng, C. R., 1999, "Dynamic Analysis of a Bimodal Ultrasonic Motor with Initially Stressed Force onto the Rotor," Sensors and Actuators A, Vol. 72, pp. 726-728.
[17] Gere, J. M., and Timoshenko, S. P., 1984, Mechanics of Materials, Wadworth Inc., Belmont, California, Chapter 7.
[18] Reddy, J. N., 1993, An Introduction to the Finite Element Method, Second Edition, Mcgraw-Hill International editions, Chapters 14.
[19] Arora, J. S., 1989, Introduction to Optimum Design, Mcgraw-Hill International editions, Chapters 5.
[20] Ma, A. J., and Chen, S. H., and Li, X. N., 1995, "Design Sensitivity Analysis of Nonlinear Response for Large Deflection Forced Vibrations of Beam," Journal of Sound and Vibration, Vol. 187, No. 4, pp. 683-693.
[21] Fox, R. L., and Kapoor, M. P., 1968, "Rates of Change of Eigenvalues and Eigenvectors," AIAA Journal, Vol. 6, No. 12, pp. 2426-2429.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊