跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周世賢
論文名稱:渦輪機葉片之損壞分析
論文名稱(外文):Failure Analysis of Turbine Blades
指導教授:葉先揚葉先揚引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:107
中文關鍵詞:渦輪機渦輪葉片隨機負載殘餘壽命葉-史損壞準則半週期理論
外文關鍵詞:Turbo-GeneratorTurbine BladesRandom LoadingResidual LifeYeh-Stratton CriterionHalf-Cycle Theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係針對電廠渦輪機在等負載(Constant Loading )或隨機負載(Random Loading )運轉時,葉片根部產生疲勞裂縫,而導致破壞,常常造成重大災害發生,因此如何預測渦輪機葉片的殘餘壽命及延長其使用壽命為本論文的目的。
本文主要參考葉-史損壞準則及半週期理論為理論依據,並使用ANSYS套裝軟體作渦輪機葉片運轉模擬及分析。(1)依據去年渦輪機葉片的有限元素模型來分析在等負載或隨機負載下之相關應力及變形分布狀態。(2)比較葉-史損壞準則、半週期理論及傳統破壞力學分析的結果,以求得其差異性及適用性。(3)提供較佳的預測及延長材料壽命的方式,並且作為工程設計之參考規範。
經由分析的結果得到以下的結果:(1)葉-史損壞準則對疲勞破壞的預測結果與實驗所得相差甚小,而半週期理論對隨機負載問題所計算的數據比傳統破壞力學所計算的數據更為嚴謹,相對的提供更高的安全性,因此以上兩種方式均可適用於渦輪機葉片疲勞破壞之殘餘壽命預測,且較傳統破壞力學簡便,可作為電廠工程師之參考。(2)具有較大強度及韌性之材料(如複合材料),其具有較大的抵抗裂紋成長能力,故其使用壽命較一般材料為長,可做為電廠工程師選用渦輪機葉片材料的參考。(3)裂紋角度以水平方向的裂紋最容易擴展,亦即是水平方向的裂紋最容易使葉片破壞,故在葉片上發現有水平方向的裂紋時,則需提高注意,可作為電廠維修人原檢測依據。

The content of the thesis is focusing on the operation of a turbo-generator under Constant Loading or Random Loading. Under these loading, the roots of the blades are always suffering fatigue cracks and will lead to severe damage for the whole engines. Hence, how to predict the residual life of the turbo-generator blades and prolong the working process has become the purpose of our thesis.
In the thesis, the author refers to the criterion of Yeh-Stratton criterion and Half-cycle theory and use ANSYS software to simulate and analyze the model of rotating blades:
(1) Using finite element model to analyze the distribution of the stress and deformation in the turbine blades under constant loading or random loading by referring to the data from papers last year.
(2) Comparing Yeh-Stratton criterion, Half-cycle theory, and results from conventional fracture mechanics to try to acquire the difference and adaptability.
(3) Providing better prediction and prolonging material life for materials as the reference of engineering analysis.
By means of the results of the analysis, we can get the following conclusions:
(1) The comparison between the prediction for the fatigue of Yeh-Stratton criterion and experiment is relatively small. And the results from the Half-cycle theory under random loading are even more decent than those from convention fracture mechanics. Therefore, previous two methods we concerned are suitable for the prediction of residual life of the turbine blades and simpler than conventional fracture mechanics.
(2) The life of materials with high strength and toughness (ex. Composite material)is longer than others, which results from the ability to resist crack growing. This will be referred to the engineers’ to select the materials of turbine blades.
(3) The angle of the crack grows horizontally easily, i.e. the horizontal crack makes the large damage to the blades. Hence, when these kinds of crack happen, the processors in the power plant should keep highly alert.

中文摘要
英文摘要
致謝
目錄
圖目錄
表目錄
第一章緒論
1-1 前言
1-2 低應力破壞發生的原因
1-2-1材料本身因素
1-2-2環境因素
1-2-3外力作用
1-2-4其它因素
1-3 文獻回顧
1-4 研究動機與目的
1-4-1研究動機
1-4-2目的
第二章轉子之受熱分析
2-1 熱系統
2-1-1熱傳遞方程式
2-1-2熱傳導(Heat Conduction)
2-1-3熱對流(Heat Convection)
2-1-4熱輻射(Heat Radiation)
2-2 熱應力
2-2-1熱應力-應變方程式
2-2-2平衡方程式
2-2-3應變與位移的關係
2-2-4熱彈性問題的力學方程式
第三章第三章基礎理論
3-1 材料破壞模式
3-2 解析法
3-3 有限元素法
3-4 疲勞分析—半週期理論
3-5 複合材裂縫應力分析料
3-6 裂縫尖端應力場
3-7 裂縫尖端應力場之角度
3-8 纖維方向角
3-9 裂縫角
3-10 破壞角
3-11 特徵方程式
3-12 裂縫長度
3-13 從裂縫尖端到起始破壞點的距離
3-14 疲勞裂縫的延伸
3-15 同質性參數
3-16 葉-史損壞準則
第四章 有限元素之電腦輔助分析軟體
4-1 使用軟體
4-2 選用元素
4-3 電腦輔助分析
第五章 結果與討論
Reference
附圖
附表

1.Hankinson, R.L.,1921, “ Investigation of Crushing Strength of Spruce At Varying Angles of Grain ’’ ,Air Service Information Circular, Vol.III, No.259, pp. 3-15.
2.Norris, C.B.,1939, “ The Elastic Theory of Wood Failure ’’, Transation ASME, pp. 259-261.
3.Hearmon, R.F.S., 1948, “ Elasticity of Wood and Plywood ’’, Forest Products Reserach Report, No.7.
4.Norris, C.B.,1950, “ Strength of Orthotropic Materials Subjected to Combined Stresses ’’,U.S. Forest Products Lab. Report, No.1816.
5.Hill,R., 1956, “ The Mathematical Theory of Plasticity ’’, Oxford Unviersity Press.
6.Goldenblat, I. And Kopnov, V.A., 1965, “ Strength of Glass-Reinforced Plastics in The Complex Stress State ’’, Mekhanika Polimerov Vol. 1(2),pp. 70-78.
7.Tsai, S.W. and Wu, E.M., 1971, “ A General Theory of Strength for Anisotropic Materials ’’, Journal of Composite Materials Vol.5, pp. 58-80
8.Cowin, S.C., 1979, “ On The Strength Anisotropic of Bone And Wood ’’, Trans. ASME J. Applied Mechanics Vol. 46(4), pp. 832-838.
9.Tan, S.C., 1990, “ A New Approach of Three-Dimensional Strength Theory of Anisotropic Materials ’’, International J. Of Fracture Vol.45, pp. 35-50.
10.Feng, W.W., 1991, “ A Failure Criterion Materials ’’, J. Composite Materials Vol.25, pp. 88-100.
11.Barlat, F.,Lege, D.J. And Brem, J.C., 1991, “ A Sex-Component Yield Function for Anisotropic Materials ’’, International Journal of Plasticity Vol.7, pp. 693-712.
12.Yeh Hsien-Yang and Kim, C.H., 1994, “ The Yeh-Stratton Criterion for Composite Materials ’’, J. Composite Materials, Vol.28, No. 10, pp. 926-939.
13.Kaye, Joseph. “ Survey of Friction Coefficients, Recovery Factor, and Heat Transfer Coefficients for Supersonic Flow ’’,J. Aeronaut. Sci., 21(2). pp. 117-129
14.Sokolnikoff, I.S., 1956. “ Mathematical Theory of Elasticity ’’, 2d, Mc Gram-Hill Book Company, Inc., New York.
15.Dunsinberre, G.M., 1949. “ Numerical Analysis of Heat Flow ’’, Mc Gram-Hill Book Company, Inc., New York.
16.Gere and Timoshenko “ Mechanics of Materials ’’, pp. 303-305.
17.Eckert, E.R.G., 1955. “ Engineering Relations for Friction and Heat Transfer to Surface in High Velocity Flow ’’, J. Aeronautical. Sci., 22(8), pp. 585-587.
18.G.R. Irwin, “ Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate ’’, Journal of Applied Mechanics, Trans. of ASME, Vol. E24, pp. 361-364, 1957.
19.Westergaard, H.K., 1939. “ Bearing Pressures and Cracks ’’, J. Appl. Mech., 61 pp. A49-53.
20.Zienkiewicz, O.C., 1971. “The Finite Element Method in Engineering Science ’’, McGraw-Hill.
21.Chan, S.K., Tuba, I.S. and Wilson, W.K., 1970. “On the Finite Element Method in Linear Fracture Mechanics ’’,Eng. Fract. Mech., 2. pp.1-17.
22.Mowbray, D.F., 1970. “A Note on the Finite Element Method in Linear Fracture Mechanics ’’, ,Eng. Fract. Mech., 2. pp.173-176.
23.Ko, William L., Mar. 1989. “Application of Fracture Mechanics and Half-Cycle Method to Prediction of Fatigue Life of Aerospace Structural Components ’’, International Journal of Fracture, vol.39, pp.45-62.
24.Ko, William L.; Carter , Alan L.; Totton, William W.; and Ficke, Jules M., 1987. “Application of Fracture Mechanics and the Half-Cycle Method to the Prediction of Fatigue Life of B-52 Aircraft Pylon Components ’’, NASA TM-88277.
25.Ko, William L., 1987. “Prediction of Service Life of Aircraft Structural Components Using the Half-Cycle Method’’, NASA TM-86812.
26.Yeh Hsien-Yang and Kim, C.H., 1994, “ Mixed Mode Creak Propagation Studied by the Yeh-Stratton Criterion ’’, Journal of Fracture Mechanics, Vol.48, No.4, pp.595-607.
27.Lekhnitskii, S.G., 1963. “ Theory of Elasticity of an Anisotropic Elastic Body ’’, trans. by P.E. Brandstatton, Holden-Day, San Francisco.
28.Sih, G.C., Paris, P.C. and Irwin, C.H., 1965. “ On Cracks in Rectilinearly Anisotropic Bodies ’’, International Journal of Fracture Mechanics, Vol.1, No.3, Sept. pp.189-203.
29.Kanninen, M.F. and Popecar, C.H., 1985. “ Advanced Fracture Mechanics ’’, Oxford University Press, New York.
30.Paris, P.C. and Sih, G.C., 1965. “ Crack Tip Stress Fields for Isotropic Elastic Bodies’’, Fracture Toughness Testing and Its Applications, Proceedings of an ASTM Symposium, ASTM Special Tech. Pub. No. 381, American Society for Testing and Materials, Philadelphia, pp.30-83.
31.Jones, R.M., 1975. “ Mechanics of Composite Materials ’’, Scripta Book, New York.
32.何慶芝、酈正能 編著,1995年6月, ‘工程斷裂力學’ ,北京航空航天大學出版社,pp.217-249.
33.Doong, S.H., Faoro, J.E., Socie, D.F. and Wang, S.S., April 1990. “ Development of A Test System and Experimental Method for In-Plane Biaxial Compressive Deformation and Failure of Fiber Composite Materials ’’, ONR-URI Composite Program Technical Report No.90-06.
34.Frost, N.E and Dugdale D.S. 1958. J. Mech. Phys.Solids. 6.
35.Liu, H.W. J. 1963.Basic eng. Trans. ASME series D 83.
36.Paris, P.C. etal. 1961“A Rotation Analytic Theory of Fatigue”, The Trend in Engineering 13 pp.9-14.
37.Donaldsen, D.R. and Anderson, W.E. 1960.“Crack Propagation Behavior of Some Airframe Materals”,Cranfiled Syposium Vol.1, pp.375-441.
38.Chern, Chyi, 1996.“A Study of Yeh-Stratton Criterion With Stress Concentrations on Fiber-Reinforces Composite Materials”, A Thesis Presented to The Department of Engineering California States University, , Long Beach, May.
39.Paris, P.C. and Sih, G.C., 1965. “ Stress Analysis of Crack ’’, in Fracture Toughness and Testing and Its Applications, American Society for Testing and Materials, Philadelphia, STP 381, pp.30-83.
40.Wilson, W.K., 1969. “ Combined Mode Fracture Mechanics ’’, Ph.D Dissertation, School of Engineering, University of Pittsburgh.
41.Tan, S.C., May 1993. “ Failure Criteria for Fibrous Anisotropic Materials ’’, Journal of Materials in Civil Engineering, Vol.5, No 2, pp.198-211
42.Srawley, J.E. and Brown, W.F. 1965. “Fracture Toughness Testing Methods ”,ASTM STP 381, pp.133-145.
43.Brown, W.F. and Srawley, J.E. 1966. “Plane Strain Creak Toughness Testing of High Strength Metallic Materials ”,ASTM STP 410,
44.Walker, E.K. 1970. “The Effect of Stress Ratio During Crack Propagation and Complex Load History on Fatigue Life ”, ASTM STP 462, p.1
45.Walker, E.K. 1970. “Effects of Environments and Complex Load History on Fatigue Life ”, ASTM STP 462, pp.1-14
46.Walker, E.K. 1970. “A Effective Strain Concept of Crack Propagation and Fatigue With Specific Application to Biaxial Stress Fatigue ”,Air Force Conf. On Fracture and Fatigue (1969). AFFDL-TR-70-144, pp.225-233
47.Metals Handbook Ninth Edition, Volume 1. 1978. “Properties and Selection : Irons and Steels ”, Volume 2. 1979. “Properties and Selection : Nonferrous Alloys and Pure Metals ”, Volume 3. 1980. “Properties and Selection : Stainless Steels , Tool Materials and Special-Purpose Metals ”, Volume 8. 1985. “Mechanical Testing ”, Volume 11. 1986. “Failure Analysis and Prevention ”, American Society for Metals.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top