跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴育誠
研究生(外文):Y. C. Lai
論文名稱:全人工髖關節之鬆脫問題的實驗模擬與評估
論文名稱(外文):Laboratory Simulation and Assessment of Total Hip Prosthesis on Loosening Problem
指導教授:廖峻德廖峻德引用關係
指導教授(外文):J. D. Liao
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:100
中文關鍵詞:超高分子聚乙烯磨耗殘屑離子植入應變硬化微小運動微振磨耗
外文關鍵詞:UHMWPEwear debrision implantationstrain hardeningmicromotionfretting wear
相關次數:
  • 被引用被引用:2
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:3
對於經過全人工髖關節手術後的患者,常會在其手術後的幾年內發生不同程度的鬆脫現象。為了評估其可能導致鬆脫之諸原因,利用髖-臼球模擬磨耗測試機進行實驗,以趨近於髖關節之生物力學原理並取最大步態值,且加速人工髖關節臼-球表面的相對磨耗,以縮短測試時間。因體內環境其所釋出之殘屑速率及滯留濃度,會對其周圍軟組織產生影響,為了研究磨耗殘屑的產生機制及磨耗率,本研究分為三個部份:(一)現有的使用材料做表面的改質,以低電流密度之不同劑量氮離子1.E13 ions/cm2及1.E16 ions/cm2植入超高分子聚乙烯來增強材料相對的機械性質;體外模擬測試採實驗室級環境,循序漸進地釋出被磨耗物質,由循環的模擬液之設計以收集殘屑與溶液做定性定量分析,並測知釋出物質之順序與濃度對磨損測試次數的關係;(二)分析失敗之全人工髖關節周圍軟組織殘留之磨耗殘屑。(三)因為接觸面不同材料之特性,使得相對摩擦造成原件的移動且逐漸增加塑性應變,最終引發植入物與周圍組織之鬆脫。對人工髖關節之可能固定界面間做微振磨耗測試,以微振磨耗試驗機預估鬆脫前的微小位移運動對植入物的影響及相關性做評估。實驗取植入物在植入股骨後可能發生微小位移運動的位置,做位移量為80μm之相對運動體外測試。由實驗結果發現:以模擬磨耗機測試離子植入式髖臼杯,B-1.E16 ions/cm2在模擬磨耗130萬次後釋出殘屑約8mg,比B-1.E13ions/cm2的殘屑總重17mg少,又比A產品的51.4mg及B產品的74.7mg來得更少;證實氮離子植入超高分子聚乙烯之抗磨耗效果顯著。磨耗殘屑之表面形態有類泡狀及類片狀殘屑,觀察發現高劑量離子植入後之試片表面較為交聯硬化,釋出殘屑形態以類片狀殘屑為主,並發現超高分子聚乙烯表面經過磨耗後產生應變硬化的表面。而體內臨床殘屑成份及化學結構分析發現紫黑色殘屑中含鈦元素約24%且以氧化鈦的形式存在。而在骨泥與鈦金屬之長時間微幅運動作用0∼80μm、受力100N及下沈速率0.0014mm/s之參數設定下,評估骨柄周圍骨泥材料受到壓力而塑性變形經微幅運動及受犁的作用影響,其表面出現磨耗、殘屑堆積20μm及黏著等現象,殘屑的釋出可能會加速接觸面發生鬆脫並縮小骨泥之彈性範圍,使得骨泥與鈦金屬骨柄界面產生滑移,進而引起最終的植入物鬆脫。
For patients inserted total hip joint prostheses, clinical findings on implant detachment, malfunction, and loosening-associate problems are frequently observed after a period of time. To evaluate various potential factors caused fixation failure, laboratory-assisted assessments are required. Present study using cup-on-ball hip wear simulator approaches to comply with gait analysis of hip, accelerates in-vitro tests by entering maximum angular setting and obtains relative abrasive condition at the interface. Morphologies and concentrations of wear debris may affect the attachment of peri-prosthetic tissues; consequently, this work deals with three main topics: (1) To improve wear resistance of UHMW polyethylene acetabular cup as the bearing part, the load-bearing properties of polyethylene are enhanced by nitrogen ion implantation; the doses with low current density differ from 1013 ions.cm-2 to 1016 ions.cm-2. (2) Wear debris generated from simulator is compared with in vivo particles taken from tissues surrounded the failure implant. (3) Initiation of fixation failure with musculo-skeletal system rises with fluctuations of stress-strain relation at the implant/tissue interface. Because of varied materials’ characteristic at the contact surfaces, relative friction causes mobility between adhesive components and gradual increase of plastic strain, and eventually brings about macro-scale dislocation between implant and surrounding tissues. This study is to propose a possible mechanism, using micro-motion tester to simulate the occurrence of implant displacement at the inserted interface before loosening. Experimental result on the ion-implanted polyethylene has demonstrated that an important surface-hardening transformation at polyethylene surface is found. Using cup-on-ball hip joint simulator, the release rate and the sequence of wear debris are detectable from the accumulated filters varied with testing cycles up to 1.3 M, e.g. weight loss of non-treated polyethylene is ca. 74.7 mg; similarly, for the 1013 ions.cm-2 implanted polyethylene is 17 mg, while for the 1016 ions.cm-2 implanted polyethylene is ca. 8 mg. Wear rate of ion-implanted polyethylene significantly decreases owing to the formation of a hardened (or cross-linked) layer at surface. Analytical result supports that morphologies and concentrations of wear debris vary with testing cycles, which include delaminated species and carbonates from the scission of polyethylene in foam- or plate-like dimension. On the other hand, because of varied materials’ characteristic at the contact surfaces, their bearing capabilities to keep in the elastic region are different. Micro-motion at the fixed interface eventually provokes macro-scale dislocation between implant and surrounding tissues. Present methodology proposes a possible mechanism occurred at the inserted interface before loosening. The parameters used are correlated with Ti-based femoral stem with respect to bone cement; the range of micro-motion is assigned as ±40μm per cycle with constant speed of 0.0014 mm/s, moving forward for 10,000 cycles each, and under a bearing load of 100 N. Experimental result on micro-motion has indicated that boundary friction causes plowing effect and thus reduced contact area; a localized edge effect occurs. Further SEM observations and roughness tests provide that the edge-effected width on bone cement is ca. 80m (due to ±40μm movement each cycle); some 20μm are caused by the accumulation of wear debris. Along partial edge of Ti-base pin, small amount of PMMA particles are adhered. The roughness at both surfaces after micro-motion tests is corresponded to friction-to-wear mechanics. When the inserted stem loses mechanical interlocks with bone cement, a gradual slip at the interface decreases their adherence. The released species may facilitate and accelerate their detachment and diminish the initial elastic range of bone cement. This may create loosening or shrinking effect on the inserted stem. A conclusion for both behaviors suggest that a variation of relative and dynamic interface in use.
摘要……………………………………………………………………Ⅰ
第一章 研究目的與簡介………………………………………………1
1-1研究目的…………………………………………………………1
1-2植入全人工髖關節後所面臨的問題 ……………………………2
1-2-1殘屑導致鬆脫的因素…………………………………………6
1-2-2金屬微粒及金屬離子的影響…………………………………7
1-2-3固定失敗的因素………………………………………………9
1-3髖關節生理位置………………………………………………12
1-4人工髖關節種類………………………………………………14
第二章 理論基礎……………………………………………………17
2-1植入物材料的基本要件…………………………………………17
2-2生醫材料的分類…………………………………………………17
2-2-1金屬類………………………………………………………18
2-2-2陶瓷類………………………………………………………19
2-2-3高分子類……………………………………………………20
2-2-4複合材料……………………………………………………21
2-3磨耗的形式……………………………………………………21
2-3-1人工髖關節的磨耗形式……………………………………22
2-3-2針對髖關節減少磨損的因素………………………………23
2-3-3微振磨耗的形式……………………………………………25
2-4應變硬化…………………………………………………………27
2-5實驗環境的分級…………………………………………………27
第三章 材料與分析方法………………………………………30
3-1使用材料……………………………………………………30
3-1-1在髖臼球磨耗面方面…………………………………31
3-1-2在股骨柄微振磨耗方面………………………………32
3-1-3人體臨床殘屑的研究…………………………………35
3-2實驗環境……………………………………………………36
3-2-1人工髖臼-球磨耗測試之環境…………………………36
3-2-2股骨柄微振磨耗測試之環境…………………………36
3-3分析方法……………………………………………………37
3-3-1髖臼球磨耗面分析方法………………………………38
3-3-2股骨柄微振磨耗分析方法……………………………39
3-3-3人體磨耗殘屑分析方法………………………………42
3-4磨耗殘屑及磨耗面之分析方法……………………………43
3-4-1以掃瞄式電子顯微鏡做表面觀察……………………43
3-4-2以電子能譜化學分析儀做殘屑定性分析……………44
3-4-3以感應耦合電漿質譜儀做定量研究…………………46
3-4-4以粗糙度測試儀做表面刻痕觀察……………………47
第四章 結果與討論……………………………………………49
4-1人工髖臼球磨耗面之測試結果……………………………49
4-1-1磨耗殘屑的收集與定量………………………………49
4-1-2磨耗殘屑收集與定量之討論…………………………54
4-1-3磨耗殘屑之形態分析…………………………………56
4-1-4磨耗殘屑形態之討論…………………………………61
4-1-5金屬離子及殘屑之定性定量分析……………………65
4-1-6金屬離子及殘屑之分析討論…………………………68
4-2股骨柄微振磨耗磨損面形態………………………………71
4-2-1微振磨耗之機制討論…………………………………79
4-3人體臨床磨耗殘屑研究結果與討論………………………88
4-3-1臨床磨耗殘屑形態…………………………………89
4-3-2人體磨耗殘屑化學結構分析………………………92
4-3-3人體磨耗殘屑成分分析……………………………94
4-3-4人體臨床磨耗殘屑研究討論………………………95
第五章 結論……………………………………………………98
第六章 未來的展望……………………………………………100
參考文獻………………………………………………………………Ⅴ
1. J.O. Galante, “The biologic effects of implant materials”, Journal of orthopaedic research, vol.9, pp.760-775, 1991.
2. S.R. Simon, Orthopaedic basic science, American academy of orthopaedic surgeons, pp.289, 1994.
3. S.R. Simon, “Orthopaedic basic science”, American academy of orthopaedic surgeons, pp.291, 1994.
4. K.J. Bundy and R.W. Penn, “The effect of surface preparation on metal/bone cement interfacial strength”, J. Biomed. Mater. Res., vol.21, pp.773, 1987.
5. C.A. Engh, “Hip arthroplasty with a Moore prosthesis with a porous coating:five year study”, Clinical orthopaedics, vol.176, pp.52-58, 1983.
6. P.S. Walker, D. Schneeweist, S. Murphy and P. Nelson, “Strains and micromotions of press-fit femoral stem prostheses”, J. Biomechaincs, vol.20, No.7, pp.693-702, 1987.
7. M.T. Manley and P. Serekian, “Wear Debris”, clinical othropaedics and related research, vol.298, pp.137-146, 1994.
8. G. Bergmann, F. Graichen and A. Rohlmann, “Hip joint loading during walking and running, weasured in two patients”, J. Biomechanics, vol.26, No.8, pp.969-990, 1993.
9. M.S. Hefzy and S.P. Singh, “comparison between two techniques for modeling interface conditions in a porous coated hip endoprosthesis”, Med. Eng. Phys. vol.19, No.1, pp.50-62, 1997.
10. I.R. Williams, M.B. Mayor and J.P. Collier, “The Impact of Sterilization Method on Wear in Knee Arthroplasty”, Clinical orthopaedics and related research, vol.356, pp.170-180, 1998.
11. P. Grigoris, P. Roberts and D.J. McMinn, “Failure of uncemented polyethylene acetabular component”, Journal of Arthroplasty, vol.8, pp.433-437, 1993.
12. G. Lewis, “Polyethylene Wear in Total Hip and Knee Arthroplasties”, J. Biomed. Mater. Res., vol.38, pp.55-75, 1997.
13. J.O. Galante, “The Biologic effects of implant materials”, Journal of Orthopaedic Research, vol 9, pp.760-775, 1991.
14. R.L. Buly, M.H. Huo, E. Salvati, W. Brien and M. Bansal, “Titanium wear debris in failed cemented total hip arthroplasty. An analysis of 71 cases”, Journal of Arthroplasty, vol.7, pp.315-323, 1992.
15. J.M. Lee, A.S. Eduardo, B. Foster, F.D. Eword, B.D. Stephen, G.B. Peter, “Size of metallic and polyethylene debris particle in failed cemented total hip replacements”, The Journal of Bone and Joint Surgery, vol.74-B, pp.380-384, 1992.
16. S.R. Simon, “Orthopaedic basic science”, American academy of orthopaedic surgeons, pp.293, 1994.
17. S.R. Simon, “Orthopaedic basic science”, American academy of orthopaedic surgeons, pp.294, 1994.
18. A.S. Shanbhag, J.J. Jacobs, T.T. Glant, “Composition and Morphology of Wear Debris in Failed uncemented Total Hip Replacement”, The Journal of Bone and Joint Surgery, pp.60-67, 1994.
19. W. Barb, J.B. Park, G.H. Kenner and A.F. von Recum, “Intermedullary fixation of artificial hip joints with bone cement-precoated implants.I.lnterfacial strengths”, J. Biomed. Mater. Res., vol.16, pp.447-458, 1982.
20. K.A. Mann, D.L. Bartel, T.M. Wright and A.R. Ingraffea, “Mechanical characteristics of the stem-cement interface”, Journal of orthopadic research, vol.9, pp.798-808, 1991.
21. N. Verdonschot and R. Huiskes, “The effects of cement-stem debonding in THA on the long-term failure probability of cement ”, J. Biomechanics, vol.30, No.8, pp.795-802, 1997.
22. Y.Q. Wang, J. Li, “Sliding wear behavior and mechanism of ultra-high molecular weight polyethylene”, Materials science and Engineering, A266, pp.155-160, 1999.
23. A.Montague, K. Merritt, S. Brown, and J. Payer, “Effects of Ca and H2O2 Added to Rpmi on the Fretting Corrosion of Ti6Al4V”, Journal of Biomedical Materials Research, vol.32, pp.519-526, 1996.
24. 傅宇輝“骨科原理及應用” 國立編譯館,第一版,第二十七章,1989.
25. 周德成,解剖生理學,昭仁出版社,第13版,第5章,1983.
26. J.B. Park, “Biomaterials science and engineering”, Introduction ,Chap.1, Plenum press, pp.1, 1984.
27. J.B. Park, “Biomaterials science and engineering”, Introduction, Chap.1, Plenum press, pp.4, 1984.
28. J.B. Park, “Biomaterials science and Engineering”, Metallic implant materials, Chap.8, Plenum press, pp.215, 1984.
29. J. D. Liao, J. Rieu, O. Demuth and Y. Corre, "Surface Graft Polymerization of Acrylamide onto Polyethylene and Polypropylene by Microwave Plasma and N+, N2+-ion Implantation", Biomedical Engineering: Application, Basis, Communication, vol. 6, No. 4, 49-55, 1994.
30. D. Brewerton, All about arthritis - past, present and future, Harvard University Press, 1992.
31. D. Dowson and B. Jobbins, “Design and development of a versatile hip joint simulator and a preliminary assessment of wear and creep in Charnley total replacement hip joints”, Engineering in Medicine, vol. 17, No. 3, pp111-117, MEP Ltd., 1988.
32. S.J. Hall, “Equilibrium and human movement”, Basic Biomechanics, Chap. 13, The McGraw-Hill companies, Inc, pp.396-435, 1995.
33. M. Viceconti, O. Ruggeri, A. Toni and A. Giunti,”Design-related fretting wear in modular Neck hip prosthesis”, J. Biomed. Mat. Res., vol. 30-2, pp.181-186, 1996.
34. S.C. Cowin, “Bone Prostheses and Implants”, Bone Mechanics, Chap.8, pp.159-196, 1989.
35. J.M. Dowling, Wear analysis of retrieved prostheses, Biocompatible Polymers, Metals and Composites, Technomic Publ., Lancaster, PA, pp.407,1983.
36. J.C. H. Goh et al., Biomechanics and advances in total joint replacement design, S20.1-20.4, The 3rd World Congress of Biomechanics (WCB’98), 182-347, Aug. 2-8, Sapporo, Japan, 1998.
37. J.D. Liao, M.C. Wang, C.C. Yu, “Wear Debris Generated from A Cup-on-Ball Hip Wear Simulator: Their Morphologies and Compositions”, Biomedical Engineering: Application, Basis, Communication, vol.11, No.3, pp.129-138, 1999.
38. L.K. Arthur, “Plastic deformation”, Materials science, Chap.2, Prentice-Hall, Inc., pp.36, 1973.
39. S.M. Mark., Polymer science dictionary, Elsevier applied science, pp.455, 1989.
40. J. Black, “Corrosion and degradation”, Orthopaedic Biomaterials in Research and Practice, Chap.10, pp.235-265, 1988.
41. 廖峻德,陳文斌,王明誠,“超高分子聚乙烯人工髖臼杯之表面機械性質強化”,中華醫學工程學刊, vol.18, No.2, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top