跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柳美鈴
研究生(外文):mei-ling liu
論文名稱:使用K曲率法則於二維物體的分斷點偵測之研究
論文名稱(外文):Using K-curvature method for 2D Object Break Point Detection
指導教授:田方治田方治引用關係
指導教授(外文):Fang-Chih Tien
學位類別:碩士
校院名稱:朝陽大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:66
中文關鍵詞:K曲率分斷點臨界值
外文關鍵詞:K-curvatureBreak pointThreshold
相關次數:
  • 被引用被引用:4
  • 點閱點閱:846
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
數位影像中如何進行影像特徵擷取,並經由獲得之特徵,進行影像外形量測或邊界表示是一項很重要之課題。目前有關此類之檢測,Ker[1]提出尋找分斷點之方式,將求得之斷點去除,將數位邊界以直線或曲線來表示,在辨認會更實際且更有意義,其主要目的是在所要求之精度下,用最少之線段或曲線來表示邊界形狀的本質。當物體進入一視覺檢測系統時,整個物體必須先轉換成數位化影像,在二值化轉換的過程中將會產生數位化誤差(Digital error)或雜訊(White noise),Ker之曲率(Curvature)法則,不但無理論做為基礎,當遇到數位化誤差存在時,容易產生不正確的量測結果,且當受檢測之物體在數位化轉換的過程中產生雜訊或分斷點(Break point)所形成之夾角為鈍角時,其斷點位置就無法適當取得,本研究之目的主要為提出K曲率改良式法則,以改進現行K曲率法在檢測分斷點時之缺失,,以便能有效率的檢測出二維物體影像之分斷點。
首先,本研究針對所應用的二維物體外形,依其構成之方式,定義簡單型、複雜型及混合型三種物體基本形態,接著針對K值計算定義K-曲率做為計算之基礎,並發展出K值之上、下限值,以迅速完成程式之執行速度,而後經由所計算之K值,計算物體邊界上每點之曲率值,根據計算所得之各點曲率值,依所求得之臨界值(Threshold value)判斷物體分斷點之位置。
本研究之實驗中,分別以簡單型、複雜型及混合型等各種不同之物體進行試驗,以求得各影像之K值及分斷點數,接著將測試之各影像旋轉,以驗証所提出的K曲率改良式法則,及進行物體分斷斷點檢測之可靠度檢測,本研究所提之K-曲率演算法則,實驗結果較Ker之演算法則為佳。
最後,本研究期能運用所提出的K-曲率改良法則在對影像進行斷點檢
i
測時,能有效判斷出數位化誤差之情形、以及提高傳統之K-曲率法則在鈍角及雜訊下之斷點檢測的成功率,其研究結果期能發展一套二維影像之斷點檢測法則,藉以提高二維影像斷點檢測之效率及量測之精確度。
Abstract
Boundary representation has been an important issue in a computer vision system. Many algorithms have been developed for boundary representation. Break point or dominant point detection is important in object recognition by means of curvature. Curvature is defined as the change rate of slope, and has been widely used in different applications, such as shape representation, feature extraction, corner detection, dominant point detection, break point detection, object recognition and so forth. Also, a great variety of methods about curvature estimation that have developed to locate break points with local extreme curvature on the curve.
In this Paper, a formal theoretical base for break point detection by K-curvature threshold is first reviewed. Then, we proposed the roles of the lower and upper bounds of K value are derived to limit the range of K-curvature for a given object. Within the upper and lower bounds, an optimal K-value is suggested. Then, Three different objects are defined. Three rules are found and the threshold value determination method is also proposed. Finally, as a contribution in this study, a modified K-curvature threshold method is proposed, and the overall theorems are verified by a designed experiment.
Experimental results indicate that the proposed modify method performs much well than Ker’s methods in a wide angle exists in the object. Our study the success rate of detecting the break points is low when a linear and circular joint and wide angle exists in the object.
Keyword: K-Curvature, Break Point, Threshold Value.
目錄
中文摘要………………………………………………………………………...i
英文摘要………………………………………………………….. ………….iii
誌謝………………. …………………………………………………………iv
目錄………………. …………………………………………………………v
表目錄……………………………………………………………………….vii
圖目錄…………………………………………………………………………viii
第一章 緒論……………………………………………………………………1
1.1研究動機與背景…………………………………………………………1
1.2研究目的…………………………………………………………………3
1.3研究方法與步驟…………………………………………………………4
1.4研究範圍…………………………………………………………6
第二章 文獻探討………………………………………………………………7
2.1邊緣偵測…………………………………………………………………7
2.2邊角偵測…………………………………………………………………8
2.2.1以邊界為基礎的邊角檢測法則……………………………………8
2.2.2灰階為基礎的邊角檢測法則……………………………………8
2.3 Ker之斷點檢測法則…………………………………………………10
2.3.1 K值計算……………………………………………………11
2.3.2臨界值T之計算…………………………………………………11
2.4 研究問題…………………………………………………………11
第三章 研究方法與步驟……………………………………………………13
3.1現行K曲率法則……………………………………………………13
3.1.1曲率之基本定義……………………………………………13
3.1.2 K曲率法則之基本定義……………………………………13
3.2物體外形基本型式……………………………………………………15
3.2.1物體外形基本定義…………………………………………15
3.2.2簡單型物體………………………………………………17
3.2.3複雜型物體………………………………………………18
3.2.4混合型物體………………………………………………19
3.3斷點之分類與偵測誤差………………………………………………19
3.3.1數位化後產生偵測誤差的種類………………………………19
3.3.2數位化後產生邊角偵測誤差之討論……………………………21
3.3.3錯誤偵測之修正…………………………………………………22
3.4K曲率改良式法則…………………………………………………22
3.4.1K值計算……………………………………………………23
3.4.1.1下限值……………………………………………………23
3.4.1.2上限值……………………………………………………24
3.4.1.4最佳K值……………………………………………………24
3.4.2臨界值計算之修正…………………………………………………26
第四章 實例驗證……………………………………………………………28
4.1演算法說明………………………………………………………30
4.2 實驗結果……………………………………………………………32
4.2.1簡單型物體實例…………………………………………………32
4.2.1.1執行結果…………………………………………………32
4.2.1.2分析與討論…………………………………………………34
4.2.2物體旋轉實例………………………………………………………34
4.2.2.1執行結果…………………………………………………37
4.2.2.2分析與討論…………………………………………………37
4.2.3複雜型混合型物體實例…………………………………………37
4.2.3.1執行結果…………………………………………………38
4.2.3.2分析與討論…………………………………………………39
4. 3綜合討論……………………..…………………………………………40
第五章 結論與建議…………………………………………………………41
5.1結論……………………………………………………………………41
5.2未來研究方向…………………………………………………………43
參考文獻……………………………………………………………………….44
附件、 程式……………………………………………………………48
表目錄
表一、 成功偵測物體斷點之最佳K值……………………….………………34
表二、三角型物體旋轉各種角度後成功偵測斷點之最佳K值……………37
表三、複雜型及混合型影像成功偵測斷點之最佳K值……………………39
圖目錄
圖1-1研究步驟………………………………………………………………5
圖3-1 簡單型物體…………………………………………………………17
圖3-2複雜型物體…………………………………………………………18
圖3-3混合型物體……………………………………………………………19
圖3-4三種不同數位化角……………………………………………………20
圖3-5邊角檢測錯誤之三種型式……………………………………………21
圖3-6 最大接合點檢測錯誤之修正圖…………………………………25
圖3-7 臨界值分析…………………………………………………………26
圖 4-1 程式執行流程圖………………………………………………………29
圖 4-2 受檢物體影像…………………………………………………………32
圖 4-3 曲率分佈圖……………………………………………………………33
圖 4-4 各種三角形物體之旋轉影像…………………………………………35
圖 4-5 各種旋轉物體之曲率分佈圖…………………………………………36
圖 4-6 複雜型及混合型之影像………………………………………………38
圖 4-7 複雜型及混合型影像之曲率分佈圖…………………………………39
參考文獻
1. J. I. Ker, Automated Profile Inspection Methods by Computer Vision Methods, Ph.D. Dissertation, Department of Industrial Engineering, University of Missouri-Columbia
2. A. Bandera, C. Urdiales, F. Arrebola, F. Sandoval, 2D object recognition based on curvature functions obtained from local histograms of the contour chain code, Pattern Recognition Letters 20, 49-55(1999)
3. C. Chang Alec and Kuang-Han Hsieh, Object identification and profile inspection by computer vision systems in multiple objects scenario, The 3rd Industrial Engineering Research Conference, January (1994)
4. J. M. Inesta, M. Buendia, and M. A. Sarti, Reliable polygonal approximations of imaged real objects through dominat point detection, Pattern Recognition 33(6), 685-697 (1998)
5. N. Friedland, A.Rosenfeld, An integrated approach to 2D object recognition. Pattern Recognition 30 (3), 525-535(1997)
6. J. A. Garcia, J. Fdez-Valdivia, and R. Molina, A method for invariant pattern recognition using the scale-vector representation of planar curves, Signal Processing 43, 39-53 (1995)
7. Ge Cong and Songde Ma, Corner enhancement in curvature scale space,Pattern Recognition,31(10),1491-1501(1998)
8. J. S. Park, J. H. Han, Contour matching: a curvature-based approach, Image and Vision Computing 16, 181-189 (1998)
9. Roberto Marcondes Cesar Junior, Luciano Da Fontoura Costa, Towards effective planar shape representation with multiscale digital curvature analysis based on signal processing techniques 29 (9), 1559-1596(1996)
10. K. Xu, A. R. Luxmoore, and F. Deravi, Comparison of Shape Features for the classification of wear particles, Engng Applic. Artif. Intell. 10(5), 485-493 (1997)
11. D. M. Tsai, Boundary-based corner detection using neural networks, Pattern Recognition, 30(1), 85-97(1997)
12. Jong-Eun Byun and Tadashi Nagata, Determining the 3-D pose of a flexible object by stero matching of curvature representations, Pattern Recogonition 29(8), 1297-1307(1996)
13. K. Xin, K. B. Lim, and G. S. Hong, A scale-space filtering approach for visual feature extraction, Pattern Recgonition 28(8), 1144-1158 (1995)
14. M. H. Han and D. Jang, The use of maximum curvature points for the recognition of partially occluded objects, Pattern Recognition 23, 21-22 (1990)
15. Li, M. Parizeau, and R. Plamondon, Segmentation and reconstruction of on-line handwritten scripts, Pattern Recognition 31(6), 675-684 (1998)
16.H.Freeman and L. S. Davis, A corner-finding algorithm for chain-coded curves, IEEE Trans. Comput. C-26, 297-303 (1977)
17.Y. Shira, Recognition of real-work objects using edge curve, Computer Vision System, 353-362, A. R. Hanson, E. M. Riseman(Eds.), Academic Press, New York (1978)
18. A. Singh and M. Shenier, Grey level corner detection: A generalization and a robust real time implementation, computer vision, graphics and image processsing 51, 54-69(1990)
19. D. M. Tsai, H. T. Hou, H. J. Su, Boundary-based corner detection using eigenvalues of covariance matrices, Pattern Recognition Letters 20, 31-40(1999)
20.H. T. Sheu and W. C. Hu, A rotationally invariant two-phase scheme for corner detection, Pattern Recognition 29(5), 819-828 (1996)
21.A. Rosenfeld, and E. Johnson, Angle Detection on digital curves, IEEE Transactions on Computers, 875-878 (1973)
22.A. Rosenfeld, and E. Johnson, An improved method of angle detection on digital curves, IEEE Transactions on Computers, 940-941 (1975)
23.Z. Zheng, Han Wang, Eam Khwang Toeh, Analysis of gray level corner detection, Pattern Recognition Letters 20, 149-162(1999)
24. K. B. Lim, K. Xin, and G. S. Hong, Detection and estimation of circular arc segments, Pattern Recognition Letters 16, 627-636 (1995)
25. C. H. The and R. T. Chin, On the detection of dominant points of digital curves, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-11(8), 859-872 (1989)
26. H. Asada and M. Brady, The curvature primal sketch, IEEE Trans, Pattern Anal. Mach. Intell. PAMI-8(1), 2-14 (1986)
27. F. Mokhtarian and A. Mackworth, Scale-based description and recognition of planar curves and two-dimensional shapes, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(1), 34-43(1986)
28. A. Rattarangsi and R. T. Chin, Scale-based detection of corners of planer curves, IEEE Trans. Anal. Mach. Intell. PAMI-14(4), 430-449 (1992)
29. J. A. Ventura and J. M. Chen, Segmentation of two-dimensional curve contours, pattern Recognition 25, 1129-1140 (1992)
30. G. Medioni and Y. Yasumoto, Corner detection and curve representation using cubic B-splines, comput. Vis., Graphics Image Process. 58, 267-278(1987)
31. M. Worring and A. W. M. Smeulders, Digital curvature estimation, Comput. Vis., Graphics Image Process. 58, 366-382(1993)
32. I. Tomek, Two algorithms for piecewise linear contours approximation of functions of one variable, IEEE Transactions on Computers 23, 445-448 (1974)
33. A. Singh, and M. Shneier, Grey level corner detection: a generalization and a robust real time implementation, Computer Vision, Graphics, and Image Processing, 51, 54-69 (1990)
34. J. H. Kim, S. H. Yoon, and K. H. Sohn, A robust boundary-based object recognition in occlusion environment by hybrid Hopfield neural networks, Pattern Recognition 29(12) , 2047-2060 (1996)
35. F. Pla, Recognition of partial circular shapes from segmented contours, Comput Vision Image Understanding 63, 334-343(1996)
36. M. Anderson and J. C. Bezdek, Curvature and tangential deflection of scatter matrix pairs and its application to vertex detection in planar shape data, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 27-40 (1984)
37. A. Rosenfeld, and C. E. Kim, , How a digital computer can tell whether a line is straight, American Mathematic Monthly, 230-234 (April 1982)
38. 吳成柯,戴善榮,程湘君,雲立實, 數位影像處理, 儒林圖書公司
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top