跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳錦城
研究生(外文):Ching-Chan Chen
論文名稱:感應式耦合電漿系統對砷化鋁鎵/砷化鎵異質接面雙極性電晶體之影響
論文名稱(外文):Effects of AlGaAs/GaAs Heterojunction Biplor Transistors by Inductively Couple Plasma
指導教授:許健興許健興引用關係
指導教授(外文):Jiang-Shing Shue
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:70
中文關鍵詞:砷化鋁鎵/砷化鎵異質接面雙極性電晶體感應式耦合電漿
外文關鍵詞:AlGaAs/GaAsHeterojunction Biplor TransistorsInductively Couple Plasma (ICP)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
屬於III-V族化合物半導體的砷化鋁鎵/砷化鎵異質接面雙極性電晶體,是具有高速高增益的元件。以乾式蝕刻為主流的蝕刻技術中,感應式耦合電漿(ICP)因具有高密度、低電壓的電漿與高蝕刻速率,是極具開發價值的新技術,但蝕刻過程中,亦會對元件造成損害而影響其電性。
本論文即以感應式耦合電漿系統對砷化鋁鎵/砷化鎵異質接面雙極性電晶體進行蝕刻,改變ICP電漿源功率、RF功率、DC偏壓、製程操作壓力、反應氣體種類及過度蝕刻的時間等參數條件,並透過電流增益及崩潰電壓的量測,以探討電漿蝕刻對元件電性的影響。
經過HP4156A的量測後,發現過大的ICP電漿源功率、RF功率及DC偏壓都會對元件造成損害,導致元件電性的衰退。而壓力維持在10mTorr以下及選用氬氣作為反應氣體,可得到較佳的元件電性。ICP處理條件為:以流量為20 sccm 的Ar作為反應氣體、 ICP 電漿源功率為300W、 RF power為30W、壓力為5mTorr、DC 偏壓是75V及20秒的過度蝕刻時間,有助於元件電性的提升。
AlGaAs/GaAs Heterojunction Biplor Transistors (HBTs) of III-V compound semiconductor that is high velocity and high current gain. In dry etching technologies , ICP (Inductively Couple Plasma) system has the valance of development in technology. But in the process of etching, the ions bombardment wafer surface , cause damages form in devices and effect devices'' reliability.
In this work , we use ICP system to etch AlGaAs/GaAs HBTs, and measure the electric properties by HP4156A . We change the parameters of ICP source power、RF power、DC bias、Operate pressure in process、reactive gases and Overetching time to find the effects when plasma etch the devices.
After measurement by HP4156A , we find that larger ICP source power、RF power and DC bias cause damage in devices , make current gain and breakdown voltage of devices decrease. When the operate pressure down to 10 mTorr and use Ar gas to be reactive gas , then we got better current gain and breakdown voltage of devices. 20 Ar sccm , 300W ICP source power , 30W RF power , 5 mTorr , DC bias is 75V , 20 seconds over etching of device 10 treatment condition will get higher current gain and breakdown voltage than device 0.
目 錄
中文摘要 ................................................................................................. I
英文摘要 ............................................................................................... II
目 錄 ................................................................................................... III
圖目錄 ................................................................................................ VI
表目錄 ...............................................................................................VIII
第一章 緒論 ..............................................................................................1
第二章 感應式耦合電漿系統之原理 ...................................................3
2-1 乾式蝕刻 ...........................................................................................3
2-2 電漿源在半導體製程上的應用 ....................................................4
2-3 各式電漿蝕刻設備之原理與其優缺點 .......................................6
2-3-1 活性離子蝕刻(RIE) ...................................................................7
2-3-2 高密度電漿蝕刻系統(High Density Plasma,HDP................9
2-3-2.1 Magnetically Confined Reactor系統(MCR) ............................12
2-3-2.2 電子迴旋共振系統(Electron Cyclotron Resonance) ............13
2-3-2.3 Helicon Wave Plasma系統(HWP) .........................................14
2-3-2.4 感應式耦合電漿(Inductively Couple Plasma,ICP)...........14
2-4 影響ICP電漿蝕刻的參數 ...............................................................20
2-4-1 反應氣體的種類 ..........................................................................20
2-4-2 製程操作壓力的影響 .................................................................21
第三章 元件製程與實驗方法 ..............................................................23
3-1 元件製程 ............................................................................................23
3-1-1 製程及儀器 .................................................................................23
3-1-2 處理條件 ......................................................................................25
3-2 實驗儀器及方法 ............................................................................28
3-2-1 集極電流(Ic)與基極電流(IB)的量測 .......................................28
3-2-2 電流增益的量測 .........................................................................29
3-2-3 崩潰電壓的量測 .........................................................................29
第四章 結果與討論 .............................................................................34
4-1 RF power 的影響 ..............................................................................34
4-1-1 RF power 對電流增益的影響 ...................................................34
4-1-2 RF power對崩潰電壓的影響 ....................................................36
4-2 ICP source power之影響 ................................................................37
4-2-1 ICP source power對電流增益值之影響 ...................................37
4-2-2 ICP source power對崩潰電壓之影響 .......................................38
4-3 製程操作壓力的影響 ....................................................................39
4-3-1 製程操作壓力對電流增益之影響 .........................................40
4-3-2 製程操作壓力對崩潰電壓之影響 .........................................41
4-4 N2與Ar over etching time 之影響 ...................................................42
4-4-1 N2 over etching time 對電流增益及崩潰電壓之影響 .............42
4-4-2 Ar over etching time 對電流增益及崩潰電壓之影響 ..............43
4-4-3 Ar與N2的比較 .............................................................................44
第五章 結 論 ......................................................................................64
參考文獻 .................................................................................................66
1. W. R. Shockley, U.S. Patent 2569347
2. H. Kroemer, proc IRE 45, p.1535, (1957).
3. H. Kroemer, proc IEEE 70, p.13, (1982).
4. H. Kroemer, J. Vac. Sci. Telo., B1(2), p.126 (1984).
5. H. Kroemer, Solid-State Electronics, 28(11), p.1101 (1985).
6. W. P. Dumke, J. M. Woodal and V. L. Rideout, Solid-State Electrons, 15(12), p.1339 (1972)
7. Hafizi, M. and Stanchina, W. E., in Growth, Processing and Applications, ed. B. Jalai and S. J. Pearton. Artech House,
Boston MA, (1995).
8. Ren, F., Mat. Res. Soc. Symp. Proc., 15. 300, (1993)
9. Stanchina, W. E., Metzger, R. A., Jensen, J. F., Hafizi, and Rensch,
D. B., Mat. Res. Soc. Symp. Proc., 29., 300, (1993)
10. Chau, H. F., Liu, W. And Beam, E. A. I. I. I., in Proc. 7 th Inter. Conf. InP and Related Materials,
IEEE, NEW YORK, pp. 640-644. (1995)
11. 李鴻志,"電漿源在半導體製程上的應用",電子月刊,第六卷第四期,第A150~A153頁,2000年4月.
12. 邱顯光、洪啟超、林鴻志,"半導體電漿蝕刻設備介紹"。 電子月刊, 第四卷第九期,
第A99~A106頁, 1998年9月.
13. Asmussen, J., J. Vac. Sci. Technol. A, , 883.7 (1989)
14. Popov, O. A., High Density Plasma Source, Noyes Publication, Park Ridge NJ, (1996)
15. Thomas, S. I. I. I., Chen, H. H., Hanish, C. K., Grizzle, J. W. and Pang. S. W., J. Vac. Sci. Technol. B, 4 , 2531. (1996)
16. Seaward, K. L. and Moll, N. J., J. Vac. Sci. Technol. B, 16, 46 (1992)
17. Fullowan, T. R., Pearton, S. J., Kopf, R. F. and Smith, P. R., J. Vac. Sci. Technol. B, 9, 7445 (1991)
18. Ren, F., Fullowan, T. R., Abernathy, C. R., Pearton, S. J. Smith, P. R., Kopf, R. F., Laskowski, E. J.
and Lothian, J. R., Electron. Lett., 27, 1054. (1991)
19. Fullowan, T. R., Pearton, S. J., Kopf, R. Chen, Y. K., Chin, M. And Ren, F., Electron. Lett., 27, 2340. (1991)
20. 李鴻文, "ICP技術發展及其在III-V族半導體之蝕刻應用",電子
月刊, 第六卷第四期,第A132~A136頁,2000年4月.
21. J. W. Lee., C. R. Abernathy, S. J. Pearton, F. Ren., C. Barratt and R. J.
Shul., Solid Solid-State Ele. 42, 733-742 (1998)
22. R. Cheug et al. Electronics Lett., 23, 16. (1987)
23. S. Thomas et al. Microelectron., 5. 249, (1986)
24. S. K. Murad and C. D. W. Wilkinsin, Progresing Project reports, (1999)
25. G. King, F. C. Sze, P. Mak, T. A. Grotjohn, and J. Asmussen, J. Vac.
Sci. Technol. A 10, 1265. (1992)
26. R. A. Stern and J. A. Johnson III, Phys. Rev. Lett. 34, 1548. (1975)
27. T. Nakano, N. Sadeghi, and R. A. Gottscho, Appl. Phys. Lett. 58, 458. (1991)
28. N. Sadeghi, T. Nakano, D. J. Trevor, and R. A. Gottscho, J. Appl. Phys.
70, 2552. (1991)
29. J. Hopwood and J. Asmussen, Appl. Phys. Lett. 58, 2473. (1991)
30. D. V. Tsu, R. T. Yong, S. R. Ovshinsky, C. C. Klepper, and L. A. Berry,
J. Vac. Sci. Technol. (1995)
31. J. S. McKillop, J. C. Forster, and W. M. Holber, J. Vac. Sci. Technol.
A7, 908 (1989).
32. J. S. McKillop, J. C. Forster, and W. M. Holber, Appl. Phys. Lett. 55,
(1989).
33. S. M. Rossnagel, S. R. Whitehair, C. R. Guarnieri, and J. J. Cuomo, J.
Vac. Sci. Technol. A8, 3113 (1990)
34. K. Ohkawa, T. Karasawa, and T. Mitsuyu, J. Cryst. Growth 111, 797 (1991)
35. R. P. Vaudo, J. W. Cook, Jr., and J. F. Schetzina, J. Cryst. Growth 138, 430 (1994)
36. R. M. Park, J. Vac. Technol. A 10, 701 (1992)
37. R. J. Shul., C. G. Willison., M. M. Bridges, J. Han., J. W. Lee, S. J. Pearton, C. R. Abernathy,
J. D. Mackenzie and S. M. Donovan, Solid-State Electronics 42, 2269-2276 (1998)
38. J. W. Coburn and H. F. Winters, J. Appl. Phys. 50, 3189 (1997)
39. U. Gerlach-Meyer and J. W. Coburn, Surf. Sci. 103, 177 (1981)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top