跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕帆
研究生(外文):I-Fan Chen
論文名稱:氮化鎵橫向磊晶生長
論文名稱(外文):The Study of Lateral Epitaxy of GaN Films
指導教授:龔志榮
指導教授(外文):Jyh-Rong Gong
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:101
中文關鍵詞:氮化鎵橫向磊晶生長
外文關鍵詞:GaNEpitaxial Lateral Overgrowth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在探討不同尺寸和方向的SiO2圖案對橫向磊晶生長氮化鎵薄膜之表面形態、磊晶品質及光電特性之影響。第一階段之氮化鎵薄膜採用有機金屬化學氣相沉積系統於1000℃條件下生長在(0001)面藍寶石基板上,隨後製作不同尺寸和方向的SiO2圖案,並在SiO2圖案上橫向磊晶生長氮化鎵薄膜。橫向磊晶生長氮化鎵薄膜採用原子層磊晶和有機金屬化學氣相沉積從事之。鎵與氮原子分別來自於三甲基鎵及高純度氨氣,輸送氣體則為經高度純化之氫氣。研究結果顯示在沿<1-100 >方向排列的SiO2帶狀條紋上橫向磊晶之效率較高,橫向磊晶後氮化鎵之磊晶品質也提高許多。由穿透式電子顯微鏡的觀察得知,SiO2帶狀條紋確實有達到阻擋差排的效果。

The purpose of this study is to explore the effect of the various SiO2 stripe patterns(different mask size or stripe direction)on the surface morphology, crystal structure, crystallinity and optical properties of ELOG(epitaxially lateral over-grown)GaN films. 2μm thick GaN film were grown on (0001) sapphire substrate by metal-organic vapor chemical deposition at a temperature range of 1000℃. The ALE-grown ELOG GaN layer and MOVPE-grown ELOG GaN layer were deposited after forming SiO2 stripe patterns on the 2μm thick GaN film. Group III metal-organic and NH3 were used as the sources of Ga and N atoms that were carried into the reactor by purified H2. Experimental results show that the lateral growth rate on the SiO2 stripe patterns along <1-100 > direction is much faster than that along the < 11-20> direction. In addition, the quality of GaN film was found to be improved by ELOG. TEM observations show a substantial reduction in dislocation density in the area of laterally over-grown GaN film. One can hardly observe dislocations in those laterally over-grown region.

中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 ⅩⅠ
第一章 緒論 1
第二章 研究背景與動機 3
2.1 Ⅲ族氮化物系列材料之發展歷史與文獻回顧 3
2.1.1 氮化鎵藍色發光二極體之進展 3
2.1.2 氮化鎵薄膜橫向磊晶之介紹 5
2.2 原子層磊晶法之磊晶生長機制 10
2.3 有機金屬化學氣相沉積法之磊晶生長機制 14
2.4 錯位差排(Misfit Dislocation)的形成機制及影響 15
2.4.1 晶格不匹配之結構 15
2.4.2 貫穿式差排(Threading Dislocation)的形成 16
2.4.3 差排對元件的影響 17
2.5 氮化鎵磊晶薄膜之基板的選擇及結晶結構之差異 21
第三章 實驗步驟 25
3.1 基板清洗 26
3.2 第一階段氮化鎵之有機金屬化學氣相沉積磊晶生長 27
3.3 二氧化矽(SiO2)圖案之製作 28
3.3.1 晶片清洗 29
3.3.2 二氧化矽(SiO2)沉積 30
3.3.3 黃光製程 30
3.4 第二階段氮化鎵橫向磊晶生長 32
3.4.1 氮化鎵橫向磊晶生長(原子層磊晶生長) 32
3.4.2 氮化鎵橫向磊晶生長(有機金屬化學氣相沉積) 33
3.5 氮化鎵薄膜之量測與分析 35
3.5.1 氮化鎵薄膜之X光繞射分析 35
3.5.2 氮化鎵薄膜之掃描式電子顯微鏡分析 36
3.5.3 氮化鎵薄膜之光電特性量測 36
3.5.4 氮化鎵薄膜之穿透式電子顯微術分析 38
第四章 結果與討論 43
4.1 氮化鎵橫向磊晶生長(原子層磊晶) 43
4.1.1 掃描式電子顯微鏡分析 44
4.1.2 X光繞射分析 54
4.1.3 光激發光分析 60
4.1.4 穿透式電子顯微術分析 63
4.2 氮化鎵橫向磊晶生長(有機金屬化學氣相沉積) 65
4.2.1 掃描式電子顯微鏡分析 65
4.2.2 X光繞射分析 79
4.2.3 光激發光分析 87
4.2.4 穿透式電子顯微術分析 89
第五章 結論 93
參考文獻 95
誌謝 100
作者簡介 101

[1] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992).
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 211 (1998).
[3] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998).
[4] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Khan, and M. S. Shur, IEEE Electron Device Lett. 18, 492 (1997).
[1] J. I. Pankove,“Gallium Nitride(GaN)I ”(Academic Press, San Diego,1998).
[6] The Blue Laser Diode, edited by Nakamura, (1997).
[7] S. Yoshida and S. Gonda, Appl. Phy. Lett. 42, 427 (1983).
[8] H. Amano, T. Asahi and I. Akasaki, Jpn. J. Appl. Phys. 29, L205 (1990).
[9] H. Amano, M. Kito, K. Hiramatsu, and Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).
[10] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
[11] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).
[12] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
[13] S. Nakamura, M. Senoh,. N. Iwasa, S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995).
[14] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Appl. Phys. Lett. 70, 1417 (1995).
[15] S. Nakamura, MRS BULLETIN, 37 (1998).
[16] A. Usui, Mat. Res. Soc. Symp. Proc. 482, 233 (1998).
[17] T. S. Zheleva, O. Nam, M. D. Bremser, and R. F. Davis, Appl. Phys. Lett. 71, 2472 (1997).
[18] T. S. Zheleva, O. Nam, J. D. Griffin, M. D. Bremser, and R. F. Davis, Mat. Res. Soc. Symp. 482, 393 (1998).
[19] O. Nam, M. D. Bremser, B. Ward, R. Nemanich, and R. F. Davis, MRS Fall Meeting, Boston, November (1996).
[20] O. Nam, M. D. Bremser, B. Ward, R. Nemanich, and R. F. Davis, Jpn. J. Appl. Phys. 36, L532 (1997).
[21] O. Nam, T. S. Zheleva, M. D. Bremser, and R. F. Davis, J. Electron. Mater. 27, 233 (1998).
[22] O. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, A Appl. Phys. Lett. 71, 2638 (1997).
[23] A. Sakai, H. Sunakawa, and A, Usui, A Appl. Phys. Lett. 73, 481 (1998).
[24] Atomic Layer Epitaxy, edited by T. Suntola and M. Simposn, (1990).
[25] J. Wang, Z. Zhu, K. T. Park, K. Hiraga, and T. Yao, J. Electron. Mater. 26, 232 (1997).
[26] Electronic Thin Film Science For Electronic Engineers and Materials Scientists, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman, (1992).
[27] D. Hull, Introduction to Dislocations, 2nd Edition. Pergamon Press, Oxford (1975).
[28] J. W. Matthews, Epitaxial Growth, Academic, New York (1975).
[29] H. F. Matare`, Defect Electronics in Semiconductors, Wiley-Interscience, New York (1971).
[30] GaN and Related Materials, edited by S. J. Pearton, (1997).
[31] J. Park, P. A. Grudowski, C. J. Eiting, and R. D. Dupuis, Appl. Phys. Lett. 73, 133 (1998).
[32] R. D. Dupuis, J. Park, P. A. Grudowski, C. J. Eiting, and Z. Liliental-Weber, J. Cryst. Growth 195, 340(1998).
[33] H. Marchand, J. P. Ibbetson, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, J. Cryst. Growth 195, 328 (1998).
[34] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Phys. Stat. Sol. (a) 176, 535 (1999).
[35] A. Kimura, C. Sasaoka, A. Sakai, and A. Usui, Mat. Res. Soc. Symp. Proc. 482, 119 (1998).
[36] Zhonghai Yu, M. A. L. Johnson, J. D. Brown, N. A. El-Masry, J. W. Cook Jr., and J. F. Schetzina, J. Cryst. Growth 195, 333 (1998).
[37] K. Hiramatsu, H. Matsushima, T. Shibata, N. Sawaki, K. Tadatomo, H. Okagawa, Y. Ohuchi, Y. Honda, and T. Matsue, Mat. Res. Soc. Symp. Proc. 482, 257 (1998).
[38] Physical Metallurgy Principles, edited by Robert E. Reed-Hill, and Reza Abbaschian (1992).
[39] H. Matsushima, M. Yamaguchi, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 189/190, 78 (1998).
[40] H. Y. Wang, S. C. Huang, T. Y. Yan, J. R. Gong, T. Y. Lin, and Y. F. Chen, Mater. Sci. Eng. B 56, 263 (1999).
[41] K. Kobayashi, A. Atsushi Yamaguchi, Shigeru Kimura, Haruo Sunakawa, Akitaka Kimura, and Akira Usui, Jpn. J. Appl. Phys. 38, L611 (1999).
[42] Y. Kawaguchi, S. Nambu, M. Yamaguchi, N. Sawaki, H. Miyake, K. Hiramatsu, K. Tsukamoto, N. Kuwano, and K. Oki, Phys. Stat. Sol. (a) 176, 561 (1999).
[43] Y. Kawaguchi, Y. Honda, M. Yamaguchi, N. Sawaki, and K. Hiramatsu, Phys. Stat. Sol. (a) 176, 553 (1999).
[44] Y. Honda, Y. Iyechika, T. Maeda, H. Miyake, K. Hiramatsu, H. Sone and N. Sawaki, Jpn. J. Appl. Phys. 38, L1299 (1999).
[45] J. Neugebaure and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
[46] R. D. Dupuis, J. Park, P.A. Grudowski, C.J. Eiting, Z. Liliental-Weber, J. Crystal Growth 195, 340 (1998).
[47] A. Sakai et al. Apl Phys. Lett., 71, 2259 (1997).
[48] A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 73, 481 (1998).
[49] W. Grieshaber, E. F. Schubert, I. D. Goepfert, R. F. Karlicek, Jr., M. J. Schurman, and C. Tran, J. Appl. Phys. Lett. 69, 503 (1996).
[50] H. Amano, K. Hiramatu, and Akasaki, Jpn. J. Appl. Phys. 27, L1384, (1988).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top