跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾富源
研究生(外文):Fu Yuan Tseng
論文名稱:應用於接面和閘極鈷矽化物特性研究
論文名稱(外文):Study on Characteristics of Cobalt Silicide Applied in Junctions and Gates
指導教授:楊炳章楊炳章引用關係楊文祿
指導教授(外文):Ping-Chang YangWen Luh Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:95
中文關鍵詞:氮離子矽化鈷固態擴散源覆蓋層高溫濺鍍
外文關鍵詞:nitrogen ionCoSi2SADScapping layerhigh temperature sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本 論 文中,我 們 將 探 討 以 不 同 的 技 術 所 形 成 的 矽 化鈷(CoSi2),其運用於超淺接面及電容的特性探討。首先,以氮離子佈植預先非晶化以形成矽化鈷,按著以矽化鈷為固態擴散源(SADS) 的方式將植入的 BF2+。擴散出以形成 P+ -n接面及P+ -閘極電容,分別探討氮離子佈植對矽化物及元件電性的效應。應用氮離子佈植與SADS技術,顯示出較高的矽化物熱穩定性、較低平帶電壓飄移、較高的崩潰電場和崩潰電荷 ;而佈植BF2+所造成的缺陷與損壞則被限制在矽化物內。
研究的另一主題,將探討應用於矽化鈷之不同覆蓋層(TiN、Ti)以形成矽化鈷前之金屬鈷濺鍍溫度(R.T.~500℃),其運用於複晶矽閘極電容的特性探討。由TiN覆蓋的矽化鈷,有較佳的崩潰電場和崩潰電荷表現;而Ti覆蓋的矽化鈷,則有較低平帶電壓飄移;在高溫濺鍍方面,確實能夠改善矽化鈷熱穩定性,給予適當的熱預算,能進而改善閘極氧化層的完性。

In this thesis, we study the characteristics for cobalt silicide(CoSi2) formed by different technologies applied in shallow junction and capacitance. First, we make pre-implantation by N2+ to form cobalt silicide, then use SADS technology to diffusion implanted BF2+ to form P+-n junction and P+-poly gate. We discuss the effect of silicide and device by N2+ implantation. Apply N2+ implantation and SADS technology, the thermal stability, flat-band voltage, breakdown field, and breakdown charge can be improved. The defect and trap caused by BF2+ implantation can be limited in the silicide.
Another topic, we study different capping layer(TiN, Ti), high temperature(R.T.~500℃) to form cobalt silicide applied in P+-poly gate. The breakdown field and breakdown charge can be improved by TiN capping. The Ti capped silicide have lower flat-band voltage shift. Beside, the thermal stability of cobalt silicide really can be improved by high temperature sputtering, we also can give suitable thermal budget to get better characteristics of device.

中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… ii
誌謝………………………………………………………………… iii
目錄………………………………………………………………… v
圖目錄……………………………………………………………… vii
表目錄……………………………………………………………… xi
第一章 緒論……………………………………………………… 1
1.1 金屬矽化物的應用…………………………………… 1
1.2 矽化物面臨的一些問題……………………………… 2
1.3 超淺接面及閘極…………………………………… 4
1.4 研究動機………………………………………………6
1.5 本篇論文之目的…………………………………… 8
第二章 以氮離子佈植非晶化及SADS製程技術來形成 p+/n 超淺接面……………………………………………………………… 10
2.1簡介…………………………………………………… 10
2.2實驗步驟………………………………………………11
2.3結果與討論……………………………………………12
2.4 結論……………………………………………………14
第三章 以氮離子佈植非晶化及SADS製程技術來形成p+-poly閘極……………………………………………………………… 16
3.1簡介……………………………………………………16
3.2實驗步驟………………………………………………18
3.3結果與討論……………………………………………19
3.4 結論……………………………………………………23
第四章 利用不同Capping Layer及高溫濺度技術來改善閘極氧化層完整性………………………………………………………………… 25
4.1簡介………………………………………………… 25
4.2實驗步驟…………………………………………… 25
4.3結果與討論………………………………………… 28
4.4 結論………………………………………………… 33
第五章 總結…………………………………………………… 34
參考文獻………………………………………………………… 90
作者簡介………………………………………………………… 95

[1] K. Shenai,”Novel refractory contact and interconnect metallizations for high-voltage and smart-power application,” IEEE Trans. Electron Devices, vol. 37, p.2207, 1990.
[2]P. Pan, N. Hsieh, H. J. Geipel, Jr., and G. J. Slusser,”Dopant diffusion in tungsten silicide,” J. Appl. Phys.,vol.53, p.3059, 1982.
[3] A. Lin, W. Chen, S. Banerjee, J. Lee, and C. Magee,”Cobalt disilicide as dopant diffusion source for polysilicon gates in MOS devices,” J. Electron. Mater., vol. 22, no. 6, 1993.
[4] A. E. morgan, E. K. Broadbent, M. Delfino, B. Coulman, and D. K. Sadana,”Characteristics of a self-aligned cobalt silicide process,’ J. Electrochem. Soc., vol. 134, no. 4, 1987.
[5] V. Probst, H. Schaber, P. Lippens, L. Van den hove, and R. F. De keersmaecker,”Limitations of TiSi2 as a source for dopant diffusion,” Appl. Phys. Lett., vol.52, p.1803, 1988.
[6] K. mase, R. F. De Keersmaecker, G. Ghosh, L. Delaey, and V. Probst,”Degradation of doped Si regions contacted with transition-metal silicides due to metal-dopant compound formation,” J. Appl. Phys., vol. 66, p.5327, 1989.
[7] V. Probst, H. Schaber, A. Mitwalaky, H. Kabza, B. Hoffmann, K. Maex, and L. Van den hove,”Metal-dopant-compound formation in TiSi2 and TaSi2: impact on dopant diffusion and contact resistance,” J. Appl. Phys., vol. 70, p. 693, 1991.
[8] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss,”Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Devices, vol.38 , p. 262 ,1991.
[9] Y. Matsubara, T. Horiuchi, and K. Okumura,” Activation energy for the C49-to-C54 phase transition of polycrystalline TiSi films with arsenic impurities,” Appl. Phys. Lett., vol. 62, p.2634, 1993.
[10] S. Motakef, J. M. E. Harper, F. M. d’Heurle, T. A. Gallo, and N. Herbots,”Stability of C49 and C54 phases of TiSi2 under ion bombardment,” J. Appl. Phys., vol.70, p. 2660. 1991.
[11] M. E. Alperin, T. C. Holloway, R. A. Haken, C. D. Gosmeyer, R. and W.D. Parmantie, “Development of the self-aligned titanium silicide process for VLSI appliciations,” IEEE Trans. Electron Devices, vol. ED-32, p. 141, 1985.
[12] W. M. Chen, J. L. Sanjay , K. Banerjee, and J. C. Lee, “Simultaneous shallow-junction formation and gate doping p-channel metal-semiconductor-oxide field-effect transistor process using cobalt silicide as a diffusion/doping source,” Appl. Phys. Lett, vol.64, no.3. P.335, 1994.
[13] L. Van den hove, K. Mase, L. Hobbs, P. Lippens, R. de Keersmaecker, V. Probst, and H. Schasber,”Comparison between CoSi2 and TiSi2 as dopant source for shallow silicided junction formation,”Appl. Surf. Sci., vol. 38, p.430, 1989.
[14] F. La Via, K. Mase, and E. Rimini,”Arsenic and boron diffusion in silicon from implanted cobalt silicide layers,”Semicond. Sci. technol., vol.10, p. 1362, 1995.
[15] M. Delfino, A. E. Morgan, P. Maillot, and E. K. Broadbent,”Range distribution of 11B+ in Co, CoSi2, Ti and TiSi2,” J. Appl. Phys., vol. 64, p. 607, 1988.
[16] M. Y. Tsai and B. G. Streetman,”Recrystallization of implanted amorphous silicon layers. I. Electrical properities of silicon implanted with BF2+ of Si++B+,” J. Appl. Phys., vol. 50, p. 183, 1979.
[17] R. G. Wilson,”Boron, fluorine, and carrier profilies for B and BF2+ implants into crystalline and amorphous Si,” J. Appl. Phys., vol. 54, p. 6879, 1983.
[18] H. Y. Huang, W. F. Wu, R. P. Yang, L. J. Chen and H. C. Lin, ”High Temperature Sputtering Deposition of Co thin films on (001)Si, ”SNDT, 1999.
[19] J. Amano, K.Nauka, M. P. Scott, J. E. Turner, and R. Tasi,”Junction leakage in titanium self-aligned silicide devices,” Appl. Phys. Lett , vol.49, p. 737, 1986.
[20] C. M. Osburn, Q. F. Wang, M. Kellam, C. Canovai, P. L. Smith, G. E. Mcguire, Z. G. Xiao, and G. A. Rozgonyi,”incorporation of metal silicides and refractory metals in VLSI technology,” Appl. Surf. Sci, vol.53, p.291, 1991.
[21] F. M. Yang and M. C. Chen,”Formation of cobalt silicide under a passivating film of molybdenum of tungsten,” J. Vac. Sci. technol. B, vol. 9, p. 1497, 1991.
[22] M. Z. Lin and C. Y. Wu,”Coablt silicide interconnection from a Si/W/Co trilayer structure,” J. Electrochem. Soc., vol. 136, p. 258, 1989.
[23] H. H. Tseng and C. Y. Wu,”A new oxidation-resistant self-aligned TiSi2 process,” IEEE Electron Device Lett., vol. 7, p. 623, 1986
[24] Y. S. Lou, C. Y. Wu, and H. C. Cheng,”The process window of a a-Si/Ti bilayer metallization for an oxidation-resistant and self-aligned TiSi2 process,” IEEE Electron Devices., vol. 39, p. 1835, 1992
[25] L. Y. Lou, C. Y. Wu, and H. C. Cheng,”A new oxidation-resistant CoSi2 process for self-aligned silicidation (salicide) technology,” Solid-State Electronics, vol. 36, p. 75, 1993.
[26] F. C. Shone, K.C. Saraswat, and J. D. Plummer, “Formation of 0.1-um n+/p and p+/n junction by doped silicide technology,“ in IEDM tech. Dig. , 1985, p.407.
[27] R. Liu, D. S. Williams, and W. T. Lynch,” A study of the leakage mechanisms of silicided n+/p junctions, ” J. Appl. Phys., vol.63, no. 6, p. 1990, 1988.
[28] F. La Via, V. Privitera, S. Lombardo, C. Spinella, V. Raineri, E. Rimini, P. Baeri, and G. Ferla,”Prercipitation of arsenic diffused into silicon from a TaSi2 source,” J. Appl. Phys., vol.69, p.726, 1991.
[29] F. La Via, V. Privitera, C. Spinella, and E. Rimini,”Stress-indused precipitation of dopants diffused into Si from TiSi2 and CoSi2 implanted layers,”Semicond. Sci. Technol, vol. 8, p.1196, 1993.
[30]W. L. Yang, W.-F. Wu, D. J. Liu, T. C. Hung, F. Y. Tseng, ”Improving thermal stability of shallow junction by N2+ pre-implantation, ”Electronics Letters, 25th Nov., 1999, V.35, p2143-2145.
[31]G. B. Kim, J. S. Kwak, and H. K. Baik, ”Effect of Ti-capping thickness on the formation of an oxide-interlayer-mediated-epitaxial CoSi2 film by ex situ annealing, ”J. Applied Physics. V.85, No.3, p1503, 1507.
[32] G. B. Kim, J. S. Kwak, and H. K. Baik, ”Ex situ formation of oxide-interlayer-mediated-epitaxial CoSi2 film using Ti capping, ”J. Vac. Sci. Technol. B 17(1), Jan/Feb 1999.
[33] G. M. Lee, K. W. Kim, Y. V. Kudryavtsev, L. Smardz, Y. P. Lee, ”Dependence of the properties of Co/Ti multilayered films on the ferromagnetic sublayer thickness, ” Thin Solid Films 341(1999)165-167.
[34] J. Cardenas, S.-L. Zhang, B. G. Svensson, and C. S. Petersson, ”On the formation of inhomogeneities in epitaxial CoSi2 layer grown from the interaction of Co/Ti bilayers with Si(100) substrates, ” J. Appl. Phys. 80 (2), 15 July 1996.
[35] Feng Hong, and Georgr A. Rozgonyi, ”Interdiffusion, Phase Transformation, and Epitaxial CoSi2 Formation in Mutilayer Co/Ti-Si(100) System, ”J. Electrochem. Soc., Vol. 141 No. 12, December 1994 p3480-3488.
[36]D. K. Sohn, J.-S. P, B. H. Lee, J.-U. Bae, K. S. Oh, S. K. Lee, J. S. Byun, and J. J. Kim, ”High Thermal Stability and Low Junction Leakage Current of Ti capped Co Salicide and its Feasibility for High Thermal Budget CMOS Devices, ”IEDM 98 1005-1008.
[37] D. K. Sohn, J.-S. Park, B. H. Lee, J. U. Bae, J. S. Byun, and J. J. Kim, ”Formation of CoTi barrier and increased thermal stability of CoSi2 film in Ti capped Co/Si(100) System, ” Applied Physics Letters, V.73, No. 16, 19 Oct 1998, p2302-2304.
[38] J. H. Ku, C.-S. Kim, C.-J. Choi, K. Fujihara, H. K. Kang, M. Y. Lee, J. H. Chung, E.-J. Lee, J. E. Lee, and D. H. Ko, ”New Effect of Ti-Capping Layer in Co Salicide Process Promising for Deep Sub-quarter Micron Technology, ”IITC 99, p256-258.
[39] O. Thomas, P. Gas, F. M. d’Heurle, F. K. Michel and G. Scilla,”Diffusion of boron, phosphorus, and arsenic implanted in thin films of cobalt disilicide,” J. Vac. Sci. Technol. A, vol.6, p.1736, 1988.
[40] V. probst, H. Schaber, A. Mitwalsky, H. Kabza, L. Van den nove, and K. Maex,”WiSi2 and CoSi2 as diffusion sources for shallow-junction formation in silicon,” J. Appl. Phys., vol. 708, 1991.
[41] O. Thomas, P. Gas, A. Charai, F. K. LeGoues, A. Michel, G. Scilla, and F. M. d’Heurle,”The diffusion of elements implanted in films of cobalt disilicide,” J.Appl.Phys., vol. 64, p. 2973, 1988.
[42] G. J. Hu, and R. H. Bruce,”Design tradeoffs between source and Buried-channel FET’s,” IEEE Trans. Electron Devices, vol. 32, p. 584, 1985.
[43] J. Y. C. Sun, C. Wong, Y. Taur, and C. H. Hsu, Proc. 1989 Symp. VLSI Tech., p. 17, 1989.
[44] J. R. Pfiester, F. K. baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, IEEE Trans. Electron Devices, vol. 37, p. 1842, 1990.
[45] J. J. Sung, and C. Y. Lu, IEEE Trans. Electron Devices, vol. 37, p. 2312, 1990.
[46] C. Y. Chang, C. Y. Lin, J. W. Chou, C. C. H. Hsu, H. T. Pan, and j. Ko, IEEE Trans. Electron Device Lett, vol. 15, p. 437, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top