跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/09 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴玉琪
研究生(外文):Yu-Chi Lai
論文名稱:台農秈19號米澱粉與果膠相容性對其膠體結構之影響
論文名稱(外文):Effect of Compatibility on the Gel of the TNuS19 Rice Starch and Pectin
指導教授:陳炯堂
指導教授(外文):John T. Chien
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:1999
畢業學年度:88
語文別:中文
論文頁數:73
中文關鍵詞:相容性澱粉果膠膠體玻璃轉化溫度
外文關鍵詞:compatibilitystarchpectingelTg
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
食品中普遍存在澱粉、多醣類等成份,由於彼此分子結構或親水性不同,其相互間相容程度可能有所差異。兩相容物質於水溶液中混合可能形成交互作用,反之,兩物質若不相容,則分子間可能互相排斥。成份間相容性對於食品之物性及品質影響極大。實驗採用糊化台農秈19號(TNuS19)米澱粉與不同酯化度之果膠混合膠體當模式系統,藉由示差掃描熱分析(DSC)和動態機械分析(DMA)測定其玻璃轉化溫度(Tg),並藉原成份與混合膠體之Tg來評估兩成份之相容性。由黏度分析和失水率分析了解不同酯化度果膠分別對TNuS19米澱粉膠體黏度及其保水力的影響,最後尋求兩分子間的相容性與膠體物性的關係。
DSC分析TNuS19米澱粉、低甲氧基果膠(LMP)、中甲氧基果膠(IMP)、高甲氧基果膠(HMP)及其混合膠體(S-LMP, S-IMP, S-HMP)顯示,在Tg之前均出現sub-Tg及sub-Tg焓。S-HMP之sub-Tg焓比預估值降低程度較S-IMP及S-LMP者為大,由焓鬆弛原理推測HMP之側鏈與TNuS19米澱粉外端小分支之交互作用程度比其他兩者高。
TNuS19米澱粉、LMP、IMP及HMP的Tg分別為75.2℃、96.2℃、96.4℃與93.5℃。而S-LMP在原成份Tg附近均有Tg存在,這顯示TNuS19米澱粉與LMP不相容。S-IMP在原IMP之Tg消失,而在87.8℃出現新的Tg。S-HMP僅於86.2℃發現新的Tg,因此推測TNuS19米澱粉之相容程度依序為: HMP>IMP>LMP。研究進一步以DMA分析Tg證明HMP與TNuS19米澱粉之相容性。DMA分析發現S-HMP在原兩成份Tg溫度之間有新的Tg之外,另外於原HMP之Tg仍然存在,故推測是混合比例不恰當會使混合膠體中多餘HMP仍呈現原有的Tg。
相容混合膠體S-HMP之黏度及保水力顯著高於TNuS19米澱粉、S-IMP及S-LMP者,且其偽膠特性較S-LMP者低。這顯示因HMP與TNuS19米澱粉兩分子相容,而可能形成異分子交互作用,因此提高了膠體黏度與保水力。相容性分別與膠體黏度及保水力皆呈正相關。混合膠體之膠體黏度與保水力均依序為: S-HMP>S-IMP>S-LMP。

Starch and polysaccharides are commonly existed in food. Difference in structure and hydrophilicity of food components may affect their mutual compatibility. If compatible, two substances may form an interaction in an aqueous solution after mixing. On the other hand, mixing incompatible substances may lead to molecular repulsion. Thus, the compatibility between two food components had a great influence on the physical properties and the qualities of foodstuffs. Gelatinized TNuS19 rice starch and pectin with different degrees of esterification was used as a model system. The glass transition temperatures (Tg) of each components and corresponding mixing gels analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to evaluate the compatibility of the TNuS19 rice starch and pectin. Viscosity and water-loss percentage were used to monitor the gel strength of the TNuS19 rice starch with added pectin and relationship between compatibility and gelling properties.
Below Tg, it showed the existence of sub-Tg and sub-Tg endotherm of the TNuS19 rice starch, low methoxyl pectin (LMP), intermediate methoxyl pectin (IMP), high methoxyl pectin (HMP) and the mixing gel of TNuS19 rice starch-pectin (S-LMP, S-IMP, S-HMP), when analyzed by DSC. The sub-Tg endotherm of S-HMP was lower than the predicted value, and the endothermic decrease of S-HMP was higher than those of S-IMP and S-LMP. This implies that the degree of interaction between the side chains of HMP and the outmost branches of the TNuS19 rice starch is higher than those of S-IMP and S-LMP.
Tg of the TNuS19 rice starch, LMP, IMP and HMP were 75℃,96.2℃,96.4℃ and 93.5℃, respectively. Presence of Tg of the original components in the S-LMP showed that the TNuS19 rice starch and LMP is incompatible. The Tg of IMP was no longer appeared in the S-IMP sample, instead, a newly-generated Tg at 87.8℃ was shown. In the S-HMP, only a new Tg appeared at 86.2℃. Therefore, above evidence revealed the fact that degree of compatibility between the TNuS19 rice starch and pectin was as follows: HMP>IMP>LMP. Tg of the TNuS19 rice starch and HMP were further analyzed by DMA. In addition to the new Tg shown in the S-HMP, the Tg of HMP still existed. This may be resulted from an inappropriate mixing ratio of the TNuS19 rice starch and HMP, which leads to the presence of Tg of HMP in the S-HMP.
Both viscosity and water holding ability of the compatible mixing gel of S-HMP were significantly higher than those of the TNuS19 rice starch gel, the S-IMP gel and the S-LMP gel. And the pseudoplasticity of S-HMP was significantly lower than that of S-LMP. Above facts imply that HMP and the TNuS19 rice starch are compatible and both form intermolecular interaction, which leads to an increase of the gel viscosity. Thus, compatibility between two components was positively correlated with the gel viscosity and the water holding ability. The gel viscosity and water holding ability of the TNuS19 rice starch-pectin gel were as follows: S-HMP>S-IMP>S-LMP.

頁次
第一章 緒言…………………………………………………………1
第二章 文獻回顧……………………………………………………3
一、 澱粉的結構及特性…………………………………………..3
1.澱粉的結構…………………………………………………...4
2.澱粉的熱行為………………………………………………...6
二、 食品成份間之物性…………………………………………12
1.相容性……………………………………………………….12
2.多醣對澱粉流變性質之影響……………………………….14
3.食品成份之玻璃轉化現象………………………………….19
第三章 材料與方法………………………………………………..33
一、 實驗材料……………………………………………………33
二、 實驗方法……………………………………………………33
1.米澱粉之萃取……………………………………………….33
2.脫脂米澱粉之製備………………………………………….34
3.混合膠體之製備………………………………………34
4.冷凍乾燥混合膠體之製備………………………………….34
5.成份分析…………………………………………………….35
6.示差掃描熱分析…………………………………………….35
7.動態機械分析……………………………………………….36
8.黏度分析…………………………………………………….36
9.失水率分析………………………………………………….37
10.統計分析…………………………………………………...37
第四章 結果與討論………………………………………………..38
一、 基本成份分析………………………………………………38
二、 示差掃描熱分析……………………………………………38
三、 動態機械分析………………………………………………46
四、 黏度分析……………………………………………………53
五、 失水率分析…………………………………………………61
第五章 結論………………………………………………………..64
參考文獻……………………………………………………………65

楊啟春、賴惠民、呂政義。1984。米穀粉分離方法之改進。食品科學。143(3) : 158-170。
林子清。1991。米穀粉糊液在不同加熱溫度下的凝膠現象之研究。食品科學。18(4) : 395-407。
黃正中。1992。直鏈澱粉含量及不相容物質對玉米澱粉老化變化之探討。輔仁大學食品營養系研究所碩士論文。
陳炯堂。1993。蛋白質與多醣類水溶液之不相容性。食品科學。20(1) : 9-20。
戴瑞岑。1996。台農秈19號米澱粉-月桂醇複合物之回凝動力學及水合性質之探討。輔仁大學食品營養系研究所碩士論文。
陳仁威。1999。以玻璃轉化溫度探討高直鏈玉米澱粉與活性麵筋之相容性。輔仁大學食品營養系研究所碩士論文。
Alloncle, M., and Doublier, J.L. 1991. Viscoelastic properties of maize starch/hydrocolloid pastes and gels. Food Hydrocolloids. 5(5): 455-467.
AOAC. 1984. Oiffical Methods of Analysis. 14th Ed. Assoc. Offic. Anal. Chemists. Washington, DC.
Appelqvist, I.A.M., Cooke, D., Gidley, M.J. and Cane, S.J. 1993. Thermal properties of polysaccharides at low moisture: 1-An endothermic melting process and water-carbohydrate interactions. Carbohydr. Polym. 20: 291-299.
Aspinall, G.O., Craig,J.W.T. and White, J.L. 1968. Lemon peel pectin I. Fractionation and partial hydrolysis of water-soluble pectins. Carbohydr. Res. 7: 442-446.
Baker, C.W. and Whistler, R.L. 1975. Distribution of D-galactosyl groups in guar gum and locust bean gum. Carbohydr. Res. 45: 237-243.
Bernal, V.M., Smajda, C.H., Smith, J.L. and Stanley, D.W. 1987. Interaction in protein/polysaccharide/calcium gels. J. Food Sci. 52: 1121-1126.
Billmeyer, F.W. 1984. Page 330 in : Polymer structure and physical properties. Textbook of polymer science. Wiley-Interscience. N.Y.
Biliaderis, C.G., Grant, D.R., and Vose, J.R. 1981. Structural characterization of legume starches. I. Amylopectin and b-limit dextrins. Cereal Chem. 58: 496-502.
Billiaderis, C.G., Page, C.M., Maurice, T.J. and Juliano, B.O. 1986. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agric Food Chem. 34: 6-14.
Billiaderis, C.G. and Zawistowski, J. 1990. Viscoelastic behavior of aging starch gels: Effects of concentration, temperature and starch hydrolyzates on network properties. Cereal Chem. 67: 240-246.
Blake, M.P. and Mitchell, W.S. 1972. Vibration and Acoustic Measuring Handbook. Spartan. N.Y.
Boyer, R.F. 1974. Polymeric Materials Page 227-368 in: Relationships between Structure and Mechanical Behavior. E. Bear and S.V. Radcliffe Eds. Academic. Soc. Metals. Ohio.
Brinke, G.T., Karasz, F.E. and Ellis, T.S. 1983. Depression of glass transition temperatures of polymer networks by diluents. Macromolecules. 16: 244-249.
Christensen, R.M. 1971. Theory of Viscoelasticity: An Introduction. Academic. N.Y.
Chakrabathy, T.K., Dwarakanath, K.R. and Bhat, B.P. 1972. Studies on physical-chemical properties of some varieties of rice. J. Food Sci. and Tech. 9(3): 140-143.
Chinachoti, P., Steinberg, M.P. and Payne, D.A. 1998. Measurement of dielectric constant to quantitative solute water in the sucrose-starch-water system. J. Food Sci. 53: 580-586.
Couchman, P.R. and Karasz, F.E. 1978. A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules. 11: 117-124.
Crua, J.A., Jansson, P.E. and Krisman, C.R. 1995. Amylose is not strictly linear. Starch/Starke. 47: 207-209.
Descamps, O., Langerin, P. and Combs, D.H. 1986. Physical effects starch-carrageenan interactions in water and milk. Food Tech.40: 81-86.
Doi, K. 1965. Formation of amylopectin granules in gelatin gel as a model of starch precipitation plant plastide. Biochim. Biophys. Acta. 94: 557-562.
Doublier, J.L., Llamas, G. and Lemeur, M. 1987. The rheological investigation of cereal starch pastes and gels. Effect of pasting procedures. Carbohydr. Polym. 7: 251-257.
Donovan, J.W. 1979. Phase transitions of the starch-water system. Biopolymers.18: 263-268.
Eliasson, A.C. 1980. Effect of water content on the gelatinization of wheat starch. Starch/Starke. 32: 270-272.
Ellis, H.S. and Ring, S.G. 1985. A study of some factors influencing amylose gelation. Carbohydr. Polym. 5: 201-204.
Ferry, J.D. 1961. Viscoelastic Properties of Polymers. Wiley. N.Y.
Fox, T.G. and Flory, P.J. 1950. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21: 581-585.
Galliard, T.and Bowler, P. 1987. Starch. Page 55-78 in: Properties and potential: Morphology and composition of starch. John Wiely and Sons. N .Y.
Gidley, M.J. Cooke, D. and Ward-Smith, S. 1993. Low moisture poly-saccharide system : Thermal and spectroscopic aspects in : The Glassy State in Foods. J.M.V. Blanshard and P.J. Lillford, Ed. Nottingham University Press. Loughborough. U.K.
Gorden, M. and Taylor, J.A. 1952. Ideal polymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2: 493-497.
Grinverg, N.V., Bikbov, T.M., Grmberg, V.Y. and Tostogutov, V.B. 1988. Thermatropic gelatin of ovalbumin-1. Viscoelastic properties of gels as a function of heating conditions and protein concentration at various pH values. Colloid and Polym. Sci. 266: 52-55.
Hamme, R.N. 1957. Harris Handbook of Noise Control: Vibration Damping. McGraw-Hill. N.Y.
Hayakawa, T., Seo, S.W. and Igaue, I. 1980. Electron microscopic observation of rice grain. Part I: Morphology of rice starch. J. Jap. Soc. Starch Sci. 27: 173-176.
Hamaker, B.R. and Griffin, V.R. 1990. Changing the viscoelastic properties of cooked rice through protein disruption. Cereal Chem. 67(3): 261-264.
Hallberg, L.M. and Chinachoti, P. 1992. Dynamic mechanical analysis for glass transitions in long shelf-life bread. J. Food Sci. 57: 1201-1204,1229.
Jenkins, A.D. 1972. Polymer Science. North-Holland Publishing Co. Am.
Juliano, B.O., Perez, C.M., Blankeney, A., Castillo, R., Kongseree, N., Laigmelet, B., Lapis, E.T., Murty, V.B.S., Paule, C.M. and Webb, B.D. 1981. International cooperative testing on the amylose content of milled rice. Starch/Starke. 33: 157-162.
Kalichevsky, M.T., Orford, P.D. and Ring, S.G. 1986. The incompatibility of concentrated aqueous solutions of dextran and amylose and its effect on amylose gelation. Carbohydr. Polym. 6 : 145-154.
Kalichevsky, M.T. and Ring, S.G. 1987. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydr. Res. 162: 323-328.
Kalichevsky, M.T., Jaroszjiewicz, E.M., Ablett, S., Blanshard, J.M.V. and Lillford, P.J. 1992. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polym. 18: 77-88.
Kalichevsky, M.T. and Blanshard, J.M.V. 1992. A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA. Carbohydr. Polym. 19(4): 271-278.
Kim, S.K. and D'appolonia, B.L. 1977. Bread staling studies. II. Effect of protein content and storage temperature on the role of starch. Cereal Chem. 54(2): 216-224.
Kovacs, P. and Kang, K.S. 1977.Food Colloids. Page 500. Ed. H. Graham. AVI Publishing Co. Connecticut.
Leaderman, H. 1957. Physic of High Polymers. Tokyo Inst. of Technol. Tokyo.
Levine, I.N. 1983. Solids and Liquids. Page 827 in: Physical Chemistry. 2nd Ed. Mcgraw Hill. N.Y.
Lineback, D.R. 1984. The starch granule organization and properties. Bakers Digest. 58: 16, 18-21.
Manners, D.J. 1989. Recent developments in our understanding of amylopectin structure. Carbohydr. Polym. 11: 87-112.
Mathot, V.B.F. 1994. Calorimetry and Thermal Analysis of Polymers. Page 181-188. Carl. Hanser. Verlag. Munich.
Menjivar, J. and Rha, C.K. 1980. Rheology. Page 293 in: Fluids. G. Astarita, G. Marrucci and S.Nicholai Eds. Plenum. N.Y.
Miles, M.J., Morris, V.J., Orford, P.D. and Ring, S.G. 1985. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135: 271-281.
Murayama, T. 1978. Introduction to dynamic mechanical behavior. Page 1-35 in: Dynamic mechanical analysis of polymeric material. Elsevier. N.Y.
Neo, M.K., Lee, S.Y. and Goh, S.H. 1991. Miscibility of poly (2-chloro-ethyl methacrylate) with various polymethacrylates. J. Applied Polymer Sci. 43: 1301-1305.
Nielsen, L.E. 1974. Mechenical Properties of Polymers and Composites. Marcel Dekker. N.Y.
Olabisi, O., Robeson, L.M. and Shaw, M.T. 1979. Polymer-Polymer Miscibility. Academic. N.Y.
Robin, J.P., Mercier, C., Charbonniere, R., and Guilbot, A. 1974. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51: 389-406.
Sajjan, S.U. and Rao, M.R. 1987. Effect of hydrocolloids on the rheological properties of wheat starch. Carbohydr. Polym. 7: 395-402.
SAS Institute Inc. 1990. SAS Procedures and SAS/Graph User's Guide. Version 6. Software Release 6.11 for Windows. SAS Institude Inc. Cary. N.C. U.S.A.
Seyler, R.J. 1994. Assignment of the Glass Transition. American Society for Testing and Materials. Philadelphia, PA.
Shogren, R.L.1992. Effect of moisture content on the melting and subsequent physical aging of corn starch. Carbohydr. Polym. 19: 83-90.
Struik, L.C.E. 1978. Physical Aging in Amorphous Polymers and Other Materials. Elsevier. Academic.
Sudhakar, V., Singhal, R.S. and Kulkarni. P.R. 1992. Starch-gum interactions: Formulations and functionality using amaranth/corn starch and CMC. 10: 369-374.
Sudhakar, V., Singhal, R.S., Kulkarni. P.R. 1995. Starch-galactomannan interactions: functionality and rheological aspects. Food Chem. 55(3): 259-264.
Szezesniak, A.S. 1977. Rheological problems in the food industry. J. Texture Studies. 8 (2): 119-133.
Thiewes, H.J. and Steeneken, P.A.M. 1997. The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content. Carbohydr. Polym. 32: 123-130.
Tolstoguzov, V.B. 1990. Gums and Stabilizers for the Food Industry. Page 157 in: Interactions of gelatin with polysaccharides. G.O.Philips, P.A. Williams and D.J. Wedlock ed. Oxford. V.K.
Tolstoguzov, V.B. 1991. Functional properties of food protein and role of protein-polysccharide interaction. Food Hydrocolloids. 4: 429-468.
Tye, R.J. 1988. The rheology of starch-carrageenan system. Food Hydrocolloids. 2: 259-266.
Voragen, A.G.J., Schols, H.A. and Pilnik, W. 1986. Determination of the degree of methylation and acetylation pectin by HPLC. Food Hydrocolloids. 1: 65-69
Vodovotz, Y. and Chinachoti, P. 1996. Thermal transition in gelatinized wheat starch at different moisture contents by dynamic mechanical analysis. J. Food Sci. 61(5): 932-941.
Wang, Y.J. and Jane, J. 1994. Correlation between glass transition temperature and starch retrogradation in the presence of sugars and maltodextrins. Cereal Chem. 71(6): 527-531.
Wetton, R.E. 1986. Page 179 in: Developments in Polymer Characterization. J.V. Dawkins ed. Elsevier Applied Science Publishers.
Wistler, R.L., Bemiller, J.N. and Paschall, E.F. 1984. Starch Chemistry and Technology. Academic. Inc. U.S.A.
Yuan, R.C. and Thompson, D.B. 1994. Sub-Tg thermal properties of amorphous waxy starch and its derivaties. Carbohydr. Polym. 25: 1-6.
Yuryev, V.P., Nemirovskaya, I.E. and Maslova, T.D. 1995. Phase state of starch gels at different water content. Carbohydr. Polym. 26: 43-46.
Zelenak, K.J. and Hoseney, R.C. 1987. Characterization of starch from bread aged at different temperatures. Starch/Starke. 39(7): 231-233.
Zelenak, K.J. and Hoseney, R.C. 1987. The glass transition in starch. Cereal Chem. 64: 121-124.
Zobel, H.F. and Argo. 1988. Starch crystal transformation and their industrial importance. Starch/Starke. 40: 1-7.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top