跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱秋蓉
研究生(外文):Chiu-Jung Chu
論文名稱:模糊多目標路線問題決策方法及其在製程規劃之應用
論文名稱(外文):A Fuzzy Multiobjective Decision Approach to Routing Problem with Applications to Process Planning in Manufacturing System
指導教授:鄧振源鄧振源引用關係
指導教授(外文):Junn-Yuan Teng
學位類別:碩士
校院名稱:華梵大學
系所名稱:工業管理學系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:73
中文關鍵詞:路線規劃問題多目標模糊集理論製造程序選擇模糊動態規劃法模糊數排序方法
外文關鍵詞:Routing problemmultiobjectivefuzzy set theorymanufacturing processfuzzy dynamic programmingtriangular fuzzy numbers
相關次數:
  • 被引用被引用:10
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
過去三十年間已發展出許多路線規劃問題的求解模式,惟多數模式均假設路網中各節點間的參數值為事先已知的明確值。當進行路線規劃問題中最適路線的決定時,必須考量不同利害群體的不同觀點,因此具有多目標性質。在模糊環境下,每一個目標的績效值,甚難用一個明確的數值加以衡量,因此具有模糊性(fuzziness),模糊集理論為處理此類問題的有效方法。本研究提出模糊多目標路線規劃決策模式,並應用在製程規劃問題上。
製造程序選擇問題可視為路線規劃問題,特別是在每一項作業可用多種機器處理的情形。在製程規劃路網中的每一節點,面臨不同的製造加工狀況(路段),因此對目標的重視也不儘相同,所以每一節點都是一個決策點。根据各節點所屬路段的模糊目標績效值,經由成對比較可得到模糊比較矩陣,並据以求得每一節點各目標的模糊權重。綜合多個目標的模糊目標績效值與模糊權重後,可得到每一路段的加權模糊目標績效值,並据此進行最佳製程路線的決定。本研究提出模糊動態規劃法,進行路網具有模糊數的路線決定,為比較各階段中各路徑(path)的優劣,本研究改良模糊數排序方法,使得模糊數所表現的樂觀與悲觀程度能一併考量。本研究所提出的路線規劃決策方法,能處理複雜的路網規劃,不但考量多目標的本質,同時考量模糊的特性,使模式更能符合實際問題的狀況。
最後本研究以自行車製造公司的鋁合金鋼圈製造加工為例,應用本研究所提出的模式進行製造程序的規劃及加工方法的選擇,以驗證模式的適用性及周詳性。
ABSTRACT
Numerous methods are available for solving routing problem during the past three decades. In most routing models, it is assumed that parameters between pairs of nodes in the network are constant values known in advance. However, analyzing routing options for the problems, it’s important to recognize that there are multiple interested parties, each of whom may bring a different viewpoint to bear on assessing any particular solution. Obviously many of the objective achievement values are difficult to measure and are imprecise in nature. Fuzzy set theory is a very convenient mathematical device for treating imprecise.
The process selection problem in manufacturing systems can be treated as a routing problem, especially when each operation can be performed by a number of alternative machines. Each node in the manufacturing process network has to consider different decision environment, in which the relative importance among objectives are not the same, so that each node will serve as a decision node. According to the fuzzy performance values of each node, a fuzzy pairwise comparison matrix will be generated. The fuzzy weights of different objectives for each node will be obtained by use of logrithm least square method. Afterwords, combining the multiple objective fuzzy performance values and the fuzzy weights, the weighted fuzzy performance value for each arc is determined. The optimal manufacturing process will be made in accordance with the weighted fuzzy performance values. This research propose a fuzzy dynamic programming and ranking fuzzy numbers methods to find the optimal manufacturing process. The proposed method can treat the fuzzy performance value with triangular fuzzy numbers. The ranking fuzzy number method will be modified so as to consider the optimistic and pessimistic of objective performance simultaneously.
Finally, an empirical study of bicycle’s part manufacture is conducted to illustrated the proposed method. From the results of this study, the objective performance values of the optimal manufacturing process arc better than traditional manufacturing process which is decided by experience of decision maker.
目 錄
頁次
摘 要I
誌 謝III
目 錄IV
表目錄VI
圖目錄VII
第一章 緒論1
1.1 研究緣起1
1.2 研究目的2
1.3 研究內容3
1.4 研究方法4
1.5 研究流程5
第二章 文獻回顧8
2.1 多目標路網規劃問題文獻的回顧8
2.2 多目標製程規劃問題文獻的回顧10
第三章 模糊多目標製程選擇路網決策模式21
3.1 模糊多目標製程選擇路網規劃模式22
3.2 模糊權重之求取26
3.3 模糊動態規劃30
3.4 模糊數排序35
3.5 解釋例說明38
第四章 個案研究44
4.1 個案公司簡介44
4.2 決策問題說明45
4.3 評估目標之研擬46
4.4 最適製程路網路線之選擇50
4.5 綜合討論55
第五章 結論與建議56
5.1 研究結論56
5.2 建議事項57
參考文獻59
簡 歷63
表目錄
頁 次
表2-1 多目標路網規劃問題相關文獻彙整11
表2-2 多目標製程規劃相關文獻彙整18
表3-1 模糊目標績效值40
表3-2 各製造程序歸一化模糊目標績效值40
表3-3 各製造程序總加權模糊效用42
表3-4 模糊動態規劃法求解過程(解釋例)43
表4-1 模糊目標績效值49
表4-2 總模糊目標績效值51
表4-3 模糊動態規劃法求解過程(個案分析)54
表4-4 二種製程目標績效值的綜合比較55
圖目錄
頁 次
圖1.1 研究流程圖7
圖3.1 左評分值與右評分值的關係36
圖3.2 製造程序圖39
圖3.3 解釋例路網加權模糊目標績效值42
圖4.1 F公司組織架構圖45
圖4.2 鋁合金鋼圈加工製造程序作業46
圖4.3 鋁合金鋼圈加工製造程序圖48
參考文獻
巫木誠(1990),「彈性製程的自動規劃」,行政院國家7科學委員會專題研究計畫。
周仁明(1991),「以製程需求表達法辦認加工特徵之研究」,交通大學工業工程研究所碩士論文。
莊宗南(1996), 「模糊理論於流程排程之應用」,高雄工學院管理科學系碩士論文。
郭明泰(1998), 「流程式排程─多準則啟發式演算法之研發與績效評估」 ,中正大學企業管理研究所碩士論文。
陳安亭(1997),「專案工程模糊排程最適化求解之探討」,台灣科技大學營建工程技術學系碩士論文。
陳建忠(1993),「結合模糊技術之動態規劃於長期發電擴充計劃之應用」,中正大學電機工程研究所碩士論文。
黃正明(1997), 「模糊最長工作優先排程之研究」,中華工學院電機工程研究所碩士論文。
劉定衢(1994), 「整合多項資源專案與人員排程問題之動態規劃模式」 , 靜宜大學管理科學研究所碩士論文。
鄧振源(1998),「運輸路線選擇之模糊多目標決策方法」,中華民國第三屆運輸網路研討會論文集,頁221-230,中央大學,中壢。
鄧振源,朱秋蓉(1999),「模糊多目標路線問題決策方法及其在製程規劃之應用」,中國工業工程年會88年年會論文集,清華大學,新竹。
Abkowitz, M., Lepofsky, M. and Cheng, P.D.M.(1992), “Selecting criteria for designating hazardous materials highway routes,” Transportation Research Record 1333, 30-35.
Baker,K.R.(1974), “Introduction to Sequencing and Scheduling” Wiley, New York.
Bastos, J.M., (1988), “Batching and routing:two functions in the operational planning of flexible manufacturing systems”, European Journal of Operational Research, Vol.33, 230-244.
Bellman, R.E. and Zadeh, L.A.(1970), “Decision making in a fuzzy environment,” Management Science Vol.17(4),141-164.
Bit, A.K., Biswal, M.P. and Alam, S.S.(1993), “Fuzzy programming approach to multiobjective solid transportation problem,” Fuzzy sets and System 57, 183-194.
Boender C.G.E. and Graan J.G. de (1989), “Multi-criteria decision analysis with fuzzy pairwise comparisons” Fuzzy Sets and Systems, Vol.29, 133-143.
Chang, Y.L., Matsuo H. and Sullivan R.S. (1989), “A bottleneck-based beam search for job scheduling in a flexible manufacturing system”, International Journal Of Production Research, Vol.27(11), 1949-1961.
Chen, R. B., (1988), “Application of Artificial Intelligence in Process planning for Hole Machining,” 清華大學工業工程所碩士論文。
Chen, S.J. and Hwang, C.L(1992), “Fuzzy Multiple Attribute Decision making: Methods and Applications,” Springer-Verlag, New York.
Cox, R.G.(1984), Routing and Scheduling of Hazardous Materials Shipments:Algorithmic Approaches to Managing Spent Nuclear Fuel Transport, Ph.D. dissertation, Cornell university, Ithaca, New York.
Current, J.R., Revelle, C.S. and Cohon, J. L.(1985), “The maximum covering/shortest path problem:A multiobjective network design and routing formulation,” European Journal of Operational Research 21, 189-199.
Current, J.R., Revelle, C.S. and Cohon, J.L.(1988), “The minimum-covering shortest-path problem,” Decision Science 19, 490-503.
Daellenbach and Dluyver (1980), “Note on multiple objective dynamic programming” , International Journal of Operation Research, 31, 591-594.
Esogbue A. O. and Bellman (1984), “Fuzzy dynamic programming and its extensions” , ITMS/Studies in the Management Sciences 20 ,147-167.
Graves, S. C., (1981), “Making production scheduling more efficient to control manufacturing”, Industrial Engineering, Vol.20(4), 646-675..
Gupta, J.N.,(1971), “M-stage scheduling problem-a critical appraisal” , International Journal of Production Research, Vol.9(2), 267-281.
Heing, M.I.(1985), “The shortest path problem with two objective functions,” European Journal of Operational Research 25, 281-291.
Jiang, J.C. and Chen M.Y. (1993), “The influence of alternate process planning in job shop scheduling”, Computers and Industrial Engineering, Vol.25, 263-266.
Karwowski, W., and Evans, G.W., (1986), “Fuzzy concepts in production management research:a review.” International Journal of Production Research, 24, 129.
Klein, C.M. (1991), “A model for the transportation of hazardous wastes,” Decision Sciences 22,1091-1108.
Klein, C.M. (1991), “Fuzzy shortest paths” Fuzzy Sets and Systems 39, 27-41.
Lee, S.M. and Jung, H.J. (1989), “A multi-objective production planning model in a flexible manufacturing environment”, International Journal of Production Research, Vol.27(11), 1981-1992.
Maimon, O.Z. and Gershwin S.B. (1988), “Dynamic scheduling and routing for flexible manufacturing systems that have unreliable machines,” Operations Research, Vol.36(2), 279-292.
Mote, J., Murthy, O. and Olson, D.L.(1991), “A parametric approach to solving bicriteria shortest path problems,” European Journal of Operational Research 53, 81-92.
P.J.M. van Laarhoven and W. Pedrycz (1983), “A fuzzy extension of Saaty’s priority theory” Fuzzy Sets and Systems 11, 229-241.
Proth, J.M. and Hillion H.P.,(1990), “Mathematical Tools in Production Management,” Plenum Press, New York.
Ro, I.K. and Kim J.I.(1990), “Multi-criteria operational control rules in flexible manufacturing systems(FMS’s)”, International Journal of Production Research, Vol.28(1), 47-63.
Shanker,K. and Tzen Y.J.(1985), “A loading and dispatching problem in a random flexible manufacturing system”, International Journal Of Production Research, Vol.23(3), 579-595.
Shobrys, D.(1981), A Model for the Selection of Shipping Routes and Storage Locations for a Hazardous Substance, Ph.D. dissertation, Johns Hopkins University, Baltimore.
Singh, N, and Mohanty, B. K. (1991), “A fuzzy approach to multi-objective routing problem with application to process planning in manufacturing systems,” International Journal of Production Research 39(6), 1161-1170.
Singh, N., Aneja, Y.P. , and Rana, S.P.(1990), “Multi-objective modelling and analysis of process planning in a manufacturing system” , International Journal of System Science, 21(4), 621-630.
Szadkowski, J.,(1971), “An approach to machine process optimization.” International Journal of Production Research, 9, 371-376.
Teodrovic, D. and Kiiuchi, S.(1990), “Transportation route choice model using fuzzy inference technique,” in:B.M. Ayyub(ed.), Proceedings of Isuma 90’, The First International Symposium on Uncertainty Modelling and Analysis, IEEE Computer Press, Silver Spring, M.D.
Warburton, A.(1987), “Approximation of Pareto optima in multiobjective, shortest-path,” Operations Research 35(1), 70-79.
Wijeratne, A.B., Turnquist, M.A. and Mirchandani, P.B.(1993), “Multiobjective routing of hazardous materials in stochastic network,” European Journal of Operational Research 65, 33-43.
Wilhelm, W.E. and Shin H.M., (1985), “Effectiveness of alternate operations in a flexible manufacturing system,” International Journal Of Production Research, Vol.23(1),65-79.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊