跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鴻斌
研究生(外文):Hung-Pin Chang
論文名稱:TiC強化金屬模離心鑄造球墨鑄鐵基複合材料磨潤性質之研究
論文名稱(外文):Tribological Properties of TiC Reinforced Ductile Iron Based Composites by Metal Mold Centrifugal Casting
指導教授:周兆民
指導教授(外文):Jaw-Min Chou
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:117
中文關鍵詞:TiC強化球墨鑄鐵基複合材料滑動磨耗磨耗速率磨擦係數表面溫度磨耗表面磨屑
外文關鍵詞:TiC Reinforced Ductile Iron Based CompositesSliding wearWear RateFriction CoefficientSurface TemperatureWear SurfaceWear Debris
相關次數:
  • 被引用被引用:1
  • 點閱點閱:583
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是利用金屬模離心鑄造之特性,結合合金設計的觀念,在鐵水中添加鈦鐵,以自生(In-situ)的方式形成TiC,研製內表層TiC顆粒濃度梯度分佈之球墨鑄鐵基複合材料。實驗中改變鈦含量(0~0.91wt%),以探討鈦含量對球墨鑄鐵之顯微組織及機械性質的影響。並藉由乾式滑動磨耗實驗,改變磨耗荷重、滑動速率及滑動距離等實驗參數,研究TiC強化球墨鑄鐵基複合材料之磨潤行為。
實驗結果顯示,距外管壁19mm處,即內管壁部分,TiC強化相的面積分率會隨鈦含量增加而上升;在距外管壁1mm處,TiC強化相的面積分率幾乎保持不變。此外,隨鈦含量增加,內管壁與外管壁之TiC強化相的面積分率差異,也會隨之擴大。而在TiC顆粒尺寸部分,則隨鈦含量改變,內、外管壁均無太大之變化,均約在2∼4μm之間。而TiC顆粒數目之變化,在距外管壁1mm處,隨鈦含量增加並無太大之差異;但在距外管壁19mm處,則隨鈦含量提高而呈大幅增加。
在鈦含量對球墨鑄鐵之機械性質的影響方面,球墨鑄鐵之抗拉強度隨鈦含量(0%~0.91wt%)增加而增加,由491Mpa增加至606 MPa;而降伏強度幾乎無變化;延伸率則隨鈦含量增加而降低,由18.5%降至4.6%。
在TiC強化球墨鑄鐵基複合材料之磨潤行為方面,伴隨球墨鑄鐵基地中形成TiC強化相,在磨耗荷重為120牛頓,滑動速率為0.66m/s的條件下,其磨耗速率可由8g/1000m降至TiC 面積分率12.05%之2.5×10-2g/1000m,兩者相差達300倍。且具TiC強化之球墨鑄鐵,可避免如未含TiC之球墨鑄鐵於高磨耗荷重時,所產生的嚴重磨耗現象,亦即代表球墨鑄鐵之耐磨耗性質大幅提高。此外,實驗結果亦顯示,TiC強化球墨鑄鐵基複合材料之磨耗速率、磨擦係數、表面溫度、表面塑性變形程度及磨屑尺寸,在固定滑動速率(0.66m/s)的條件下,會隨磨耗荷重(30N~120N)增加而增加。而在固定磨耗荷重(90N)的條件下,隨滑動速率提高(0.33m/s~1.32m/s),其磨耗速率、表面溫度、表面塑性變形程度及磨屑尺寸,也具有前述相同之變化趨勢;但其磨擦係數,則由於滑動速率提高,使得黏著-滑移行為(Stick-Slip)降低,因而隨之降低。此外,在固定磨耗荷重(90N)及固定滑動速率(0.66m/s)的條件下,TiC強化球墨鑄鐵基複合材料之磨耗速率隨滑動距離增加而減少。
The effect of the amounts of additive(0~0.91%)titanium on the distribution of TiC reinforcing particles by in-situ in ductile iron matrix, microstructures, and mechanical properties were studied. The final purpose of this study wants to establish the relationship of tribological properties between TiC fraction ,applied load, sliding speed and sliding distance of dry sliding wear of ductile iron based composites with TiC reinforcing particles.
The results showed that the ductile iron based composite with distribution of in-situ TiC reinforcing particles on the inner surface layer can be produced successfully. The distribution of TiC particles in the radial direction is in the order of interior region > outside region. The results also revealed that the amounts of TiC particles increase with increasing the amounts of titanium. For the mechanical properties, the tensile strength increases with increasing the amounts of titanium , but the tendency of ductility is contrary. The hardness(HRc) of interior region and outside region are both greater than central part , but the microhardness is in the order of interior region > outside region.
The tribological properties of ductile iron and ductile iron based composites reinforced with(3.12%、4.60%、5.67% and 12.05%)TiC was investigated by using pin on disc dry sliding condition. The wear rate, friction coefficient, contact surface temperature, morphology of wear surface and wear debris of ductile iron based composites were measured for a load range 30~120N, sliding speed range 0.33~1.32m/s and sliding distance 500~2500m. The experiment results show that TiC particles in ductile iron matrix can reduce the wear rate by a factor of 3×102. The wear rate and contact surface temperature of ductile iron based composite increase with increasing applied load and sliding speed. The friction coefficient increases with increasing applied load and decrease with increasing sliding speed. Examination of the wear surfaces and wear debris by SEM identified that the presence of TiC particles can suppress the plastic deformation of the ductile iron matrix and it also can act as a load bearing element .
中文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ Ⅰ
英文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ Ⅲ
誌 謝 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ Ⅴ
總 目 錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ Ⅵ
圖 目 錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ Ⅸ
表 目 錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ ⅩⅤ
第一章 前言 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1
第二章 前人研究及理論基礎 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 4
2.1 TiC 之形成 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 4
2.2 離心鑄造法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 4
2.3 磨 潤 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 6
2.3.1 磨耗現象 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 7
2.3.2 滑動磨耗機構 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 7
2.3.3 滑動磨耗過程 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 15
2.3.4 金屬及金屬基複合材料磨潤行為 ‧‧‧‧‧‧‧‧ 17
2.3.5 磨耗面溫度量測 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 21
第三章 實驗方法與步驟 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 23
3.1 材料製備 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 23
3.2 試片取樣 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 23
3.3 顯微組織分析 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 28
3.4 硬度試驗 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31
3.5 拉伸試驗 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31
3.6 磨耗試驗 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31
3.7 磨耗試片分析 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 37
第四章 結果與討論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 38
4.1 鈦含量對 TiC 強化球墨鑄鐵基複合材料的影響 ‧‧‧‧‧ 38
4.1.1 鈦含量對球墨鑄鐵顯微組織的影響 ‧‧‧‧‧‧‧ 38
4.1.2 鈦含量對球墨鑄鐵機械性質的影響 ‧‧‧‧‧‧‧ 49
4.2 磨耗荷重對 TiC 強化球墨鑄鐵基複合材料磨潤
性質的影響 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 53
4.2.1 磨耗荷重對磨耗率之影響 ‧‧‧‧‧‧‧‧‧‧‧ 55
4.2.2 磨耗荷重對磨擦係數之影響 ‧‧‧‧‧‧‧‧‧‧ 60 4.2.3 磨耗荷重對表面溫度的影響 ‧‧‧‧‧‧‧‧‧‧ 69 4.2.4 磨耗荷重對磨耗表面之影響 ‧‧‧‧‧‧‧‧‧‧ 71 4.2.5 磨耗荷重對磨屑型態之影響 ‧‧‧‧‧‧‧‧‧‧ 80
4.3 滑動速率對 TiC 強化球墨鑄鐵基複合材料磨潤
性質的影響 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 83
4.3.1 滑動速率對磨耗速率之影響 ‧‧‧‧‧‧‧‧‧‧ 85
4.3.2 滑動速率對磨擦係數之影響 ‧‧‧‧‧‧‧‧‧‧ 88 4.3.3 滑動速率對表面溫度之影響 ‧‧‧‧‧‧‧‧‧‧ 95
4.3.4 滑動速率對磨耗表面之影響 ‧‧‧‧‧‧‧‧‧‧ 95 4.3.5 滑動速率對磨屑型態之影響 ‧‧‧‧‧‧‧‧‧‧ 99
4.4 滑動距離對 TiC 強化球墨鑄鐵基複合材料磨潤
性質之影響 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 103
4.4.1 滑動距離對磨耗速率之影響 ‧‧‧‧‧‧‧‧‧‧‧ 103
4.4.2 滑動距離對磨擦係數之影響 ‧‧‧‧‧‧‧‧‧‧ 103
4.5 TiC 強化球墨鑄鐵基複合材料與球墨鑄鐵鐵磨潤性質的綜合比較
‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 106
4.5.1 TiC 對磨耗率之影響 ‧‧‧‧‧‧‧‧‧‧‧‧‧ 106
4.5.2 TiC 對磨擦係數之影響 ‧‧‧‧‧‧‧‧‧‧‧‧ 107
4.5.3 TiC 對磨耗表面之影響 ‧‧‧‧‧‧‧‧‧‧‧‧ 107
4.5.4 TiC 對磨屑之影響 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 108
第五章 結論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 109
第六章 參考文獻 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 111
第七章 未來研究方向 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 117
1. S.H.Choi , C.S.Kang , and C.R.Loper , Jr ,“A Study of Stainless Steel to Cast Iron in Centrifugal Casting.”, AFS Trans. , vol.111 , pp971-982 , 1989.
2. 楊學民、孫月海、于溥、劉天中、郭占成、王大光 ,“雙金屬耐磨套筒的離心鑄造研究.”, 鑄造技術 , vol.6 , pp9-11 , 1993.
3. 蕭驊昭、付玉珍、楊學民、孫月海、王大光 , 鑄造技術 ,“雙金屬離心鑄造耐磨套筒的金屬學和物理特性研究.”, vol.1 , pp39-42 , 1994 .
4. B.S.Kang , C.W.Won , B.S.Chun ,“Preparation of Nickel-Coated Alumina Composite Powder by Aqueous-Phase Reduction Process.”, Journal of Material Science , vol.30, pp3883-3887, 1995.
5. Aina Hung ,“Electroless Copper Deposition with Hypophosphite as Reduction Agent.”, Plating and Surface Finish ,vol. 75, pp62-65 , 1988.
6. 邱紹成 ,“離心鑄造法簡介.”, 鑄工 , vol.22, pp47-61 , 1979.
7. W.Yisan,Z.Xinyuan , L.Fengchun and Z.Guangting ,“Study on An Fe-TiC Surface Composite Produced In-situ.”, Materials and Design , vol.20 , pp233-236 , 1999.
8. W.Hjiang , W.D.Pan , G.H.Song and X.L.Han ,“In-situ Synthesis Of Composite In Liquid Iron.”, Journal Of Materials Science Letters , vol.16 , pp1830-1832 , 1997.
9. T.Z.Kattamis and T.Suganuma ,“Solidification Processing and Tribological Behavior of Particulate TiC-Ferrous Matrix Composite.”, Materials Science and Engineering , vol.128 , pp241-252 , 1990.
10. C.Raghunath , M.S.Bhat and P.K.Rohatgi ,“In-Situ Technique for Synthesizing Fe-TiC Composite.”, Scripta Metallurgica et Materialia , vol.32 , pp577-582 , 1995.
11. O.N.Dogan and J.A.Hawk ,“Abrasion Resistance of In Situ Fe-TiC Composites.”, Scripta Metallurgica et Materialia , vol.33 , pp953-958 ,1995 .
12. M.K.Premkumar and M.G.Chu , “Al-TiC Particulate Composite Produced by a Liquid state In-Situ process.”, Materials Science and engineering , vol.202 , pp172-178 , 1995.
13. B.N.Pramila Bai , B.S.Ramasesh and M.K.Surappa ,“Dry Sliding Wear of A356-Al-SiCp Composite.”, Wear , vol.157 , pp295-304 , 1992.
14. A.T.Alpas and J.Zhang ,“Wear Rate Transitions in Cast Aluminum-silicon Alloys Reinforced with SiC Particles.”, Scripta Metallurgica et Materialia , vol.32 , pp505-509 , 1992.
15. A.T.Alpas and J.D.Embury ,“Sliding and Abrasive Wear Behavior of An Aluminum(2014)-SiC Particle Reinforced Composite.”, Scripta Metallurgica et Materialia , vol.24 , pp931-935 , 1990.
16. A.T.Alpas and J.Zhang ,“Effect of SiC Particulate Reinforcement on the Dry Sliding Wear Aluminum-silicon Alloys.”, Wear , vol.155 , pp83-104 , 1992.
17. B.Venkataraman and G.Sundararajan ,“The Sliding Wear Behavior of Al-SiC Particulate Composite-Ι.Macrobehavior.”, Acta mater , vol.44 , pp451-460 , 1996.
18. Z.F.Zhang , L.C.Zhang and Y.W.Mai ,“Wear of Ceramic Particle-reinforced Metal Matrix Composites Part Ιwear mechanism .”, Journal of Materials Science , vol.30 , pp1961-1966 , 1995.
19. Manish Narayan , M.K.Surappa and B.N.Pramila Bai ,“Dry Sliaing Wear of Al allot 2024-Al2O3 Particle Metal matrix Composite .”, Wear , vol.181 , pp563-570 , 1995.
20. Z.Y.Ma , Y.N.Liang and Y.Z.Zhang , “Sliding Wear Behavior of SiC Particle Reinforced 2024 Aluminum Alloy Composite.”, Materials Science and Technology , vol.12 , pp751-756 , 1996.
21. J.Q.Jiang,R.S.Tan and A.B.Ma ,“Dry Sliding Wear Behavior of Al2O.3 —Al Composite Produced by Centrifugal Force Infiltration.”, Material Science and Technology , vol.12 , pp483-485 , 1996.
22. S.C.Tjong , S.Q.Wu and H.C.Liao , “Wear Behavior of an Al-12%Si Alloy Reinforced With A low Volume fraction of SiC Particles.”, Composite Science and Technology , vol.57 , pp1551-1558 , 1997.
23. Rong Chen,Akira Iwabuchi,Tomoharu Shimizu,Hyng Seop Shin and Hidenobu Mifune , “The Sliding Wear Resistance Behavior of NiAl and SiC Particle Reinforced Alumininum Alloy Matrix Composites.”, Wear , vol.213 , pp175-184 , 1997.
24. B.Manish.Roy , B.Venkataraman , V.V.Bhanuprasad , Y.R.Mahajan , G.Sundararajan ,“The Effect of Particle Reinforcement on The sliding Wear Behavior of Aluminum Matrix Composite.”, Metall.Trans , vol.23 , pp2833-2847 , 1992.
25. K.J.Pearsall , Z.Eliezer and M.F.Amateau ,“The Effect of Sliding Time and Speed on the Wear of Composite materials.”, Wear , vol.63 , pp121-130 ,1980.
26. A.Wang and H.J.Rack ,“Transition Wear Behavior of SiC Particulate SiC Whisker Reinforced 7091 Al Metal Matrix Composites.”, Material Science and Engineering , vol.147 , pp211-224 , 1991.
27. G.J.Howell and A.Ball ,“Dry Sliding Wear of Particulate-Reinforced Aluminium Alloys Against Automobile Friction Materials.”, Wear , vol.181 , pp379-390 , 1995.
28. M.Bai , Q.Xue and H.Guo ,“Reciprocal Sliding Wear Sic Particle Reinforced Al-Cu Aluminum Matrix Composite Against Stainless Steel,High Speed to Steel and Ceramics-Ι.Tribological Properties and Construction of Tribo-maps.”, Wear , vol.195 , pp152-161 , 1996.
29. M.Bai , Q.Xue and H.Guo ,“Reciprocal Sliding Wear Sic Particle Reinforced Al-Cu Aluminum Matrix Composite Against Stainless Steel , High Speed to Steel and Ceramics-Π.Wear Mechanism.”, Wear , vol.194 , pp.126-136 , 1996.
30. A.Ravikiran and M.K.Surappa ,“Effect of Sliding Speed on Wear Behavior of A356 Al-30wt.% SiCp MMC.”,Wear , vol.206 , pp33-38 , 1997.
31. L.ceschini,G.S.Daehn,G.L.Garagnani and C.Martini ,“Friction and Wear BehaviorofC4 Al2O3/Al Composites under Dry Sliding Conditions.”, Wear , vol.216 , pp229-238 , 1998.
32. J.Zhang and A.T.Alpas ,“Wear Regimes and Transitions in Al2O3 Particulate-Reinforced Alumininum Alloys.”, Materials Science and Engineering , vol.161 , pp273-284 , 1993.
33. Aiguo Wang and H.J.Rack ,“Dry Sliding Wear in 2124 Al-SiCw/17-4 PH Stainless Steel Systems.”, Wear , vol.147 , pp355-374 , 1991.
34. S.C.Tjong and K.C.Lau ,“Sliding Wear of Stainless Steel Matrix Composites Reinforced with TiB2 Particles.”, Materials Letters , vol.41 , pp153-158 , 1999.
35. V.K.Rai , R.Srivastava , S.K.Nath and S.Ray , “Wear in Cast Titanium Carbide Reinforced Ferrous Composite under Dry Sliding. ”, Wear , vol.231 , pp265-271 , 1999.
36. R.K.Galgali , H.S.Ray and A.K.Chakrabarti ,“Wear Characteristics of TiC Reinforced Cast Iron Composite Part 1-Adhesive Wear.”, Materials Science and Technology , vol.14 , pp810-815 , 1998.
37. D.F.Moore ,“Principle and Application of Tribology.”, Pergamon Oxford , pp1-388 , 1975.
38. N.P.Suh , in“Tribophysics.”, Prentice-Hall , New Jercy , pp1-25 , 1986.
39. Karl-heine Zum Gahr ,“Microstructure and Wear of Materials.”Elsevier Science Publishers B.V.New York , pp73-246 , 1987.
40. A.J.kinloch ,“The Science of Adhesion.”, Journal of Materials Science , vol.15 , pp2141-2166 , 1990.
41. Syniuta.W. and Corrow.C. ,“Scanning Electron Microscope Studies of Fracture Mechanisms of SAE 52100 Bearing Steel.”, wear , vol.15 , pp171-186 , 1970.
42. L.H.Chen ,“Deformation, Transfer and Debris Formation During Sliding Wear of Metals.”, Scripta Metallurgica et Materialia , vol.24 , pp827-832 , 1990.
43. D.A.Rigney , L.H.Chen and M.G.Naylor ,“Wear process in Sliding Systems.”Wear , vol.100 , pp195-219 , 1984.
44. D.A.Rigney and L.H.Chen ,“Transfer During Unlubricated Sliding Wear of Selected Metal Systems.”, Wear , vol.100 , pp195-219 , 1984.
45. M.Nili Ahmadabadi , H.M.Ghasemi and M.Osia ,“Effects of Successive Austempering on the Tribological Behavior of Ductile Cast Iron.”, Wear , vol.231 , pp293-300 , 1999.
46. Francis E. and Kennedy ,“Thermal and Thermomechanical Effects in Dry Sliding.”, Wear , vol.100 , pp453-476 , 1984.
47. N.P.Suh ,“The Delamination Theory of Wear.”, Wear , vol.25 , pp111-124 , 1973.
48. Junji Sugishita and Synoshin Fujiyoshi ,“The Effect of Cast Iron Graphite on Friction and Wear Performance Ⅱ : Variables Influence Graphite film Formation.”, Wear , vol.68 , pp7-20 , 1981.
49. M.A.martinez , A.Martin and J.llorca ,“Wear of Al-Si/SiC Composites at Ambient and Elevated Temperature .”, Scripta Metallurgica et Materialia , vol.28 , pp207-212 , 1993.
50. E.Takeuchi ,“The Mechanism of Wear of Spheroidal Graphite Cast iron in Dry Sliding .”, Wear , vol.19 , pp267-276 , 1972.
51. M.F.Ashby , J.Abulami and H.S.Kong , “Temperature Maps for Frictional Heating in Dry Sliding .” Tribological Trans. , vol.34 , pp577-587 , 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top