跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃昱淳
研究生(外文):Yu-Chun Huang
論文名稱:製程條件對熔融還原爐內爐壁耐火材沖蝕之水模研究
論文名稱(外文):Effect of Operating Conditions on Refractory Erosion of Smelting Reduction Furnace by Water Modeling
指導教授:林惠娟林惠娟引用關係
指導教授(外文):Huey-Jiuan Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:91
中文關鍵詞:水模研究耐火材料硼酸氣穴沖蝕
外文關鍵詞:Water ModelRefractoryBoric AcidCavitation Erosion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:698
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以中鋼公司提供的熔融還原爐之壓克力水模,藉由改變不同的製程參數,期能找出熔融還原爐內最佳的吹射攪拌效果,同時也利用硼酸(H3BO3)粉末壓餅來模擬耐火材料,希望能找出各製程參數對於耐火材料沖蝕的影響。
在吹射攪拌效果評估方面,在固定的噴吹管對焦位置(液面中心)及對稱的噴吹管排列方式下,改變液面高度、噴吹管管數、噴吹管口徑、底吹氣體流量等製程參數,分別探討其對吹射後分解氣泡平均大小、分解氣泡平均侵入深度、液面平均噴濺高度之影響。實驗結果發現,在氣體總流量相同時,4管吹射所獲得的攪拌效果為最好;而在相同流量及管數時,則以7.5㎜管徑的噴吹管所獲得的攪拌效果最好。
在耐火材沖蝕方面,藉由觀察流場及不同位置的H3BO3試片受侵蝕情形可發現,當攪拌效果愈好時,H3BO3試片的沖蝕也愈嚴重,其中當液高為480㎜及420㎜時,B層試片的沖蝕情形為最嚴重;而液高為550㎜時,則C層試片受侵蝕的情形為最嚴重。
This research was performed under different operating conditions with the water mold of smelt reduction vessel provided by China Steel Corporation to find out the best stirring effect of bottom blowing gas injection. In the meanwhile, the boric acid (H3BO3) disks were also chosen to simulate the erosion of refractory under different operating conditions.
During the experiments of assessment of stirring effect under gas injection in the smelt reduction water mold, we fixed the focusing point of tuyere at the center of bath surface and arranged tuyere symmetrically. The effect of bath height, number and size of tuyeres and gas flow rate on average decomposed bubble size, penetrating depth and spout height were studied. The results shown that the best stirring effect could be obtained with 4 tuyeres blowing under the same total gas flow rate. Otherwise, we could also get the best stirring effect with 7.5 mm diameter tuyere under the same gas flow rate and tuyere numbers.
Through the observation of the flow pattern and the erosion of H3BO3 disks at different positions, we found that the better the stirring effect was, the more serious the erosion was. The erosion rate of H3BO3 disks at Level B was fastest with the bath height of 420 mm and 480 mm. However, if the bath height was at 550mm, the erosion of Level C was the most serious.
中文摘要......................................................................................................................Ⅰ
英文摘要......................................................................................................................Ⅱ
誌謝..............................................................................................................................Ⅲ
目錄............................................................................................................................ Ⅳ
表目錄........................................................................................................................ Ⅴ
圖目錄........................................................................................................................ Ⅵ
第一章緒論................................................................................................................1
1-1 研究背景.......................................................................................................1
1-2 文獻回顧.......................................................................................................5
1-3 研究目的與內容...........................................................................................8
第二章實驗原理......................................................................................................14
2-1 吹射攪拌原理.............................................................................................14
2-2 水模系統相似理論.....................................................................................16
2-2-1 壓克力水模主體之設計.................................................................16
2-2-2 製程條件之相似性.........................................................................17
2-3 耐火材料沖蝕之理論................................................................................21
2-3-1 耐火材料替代物的選取.................................................................21
2-3-2 氣穴沖蝕之理論.............................................................................21
第三章實驗方法......................................................................................................24
3-1實驗架構流程............................................................................................24
3-2實驗系統之建立........................................................................................25
3-2-1 60﹪壓克力水模之建立.................................................................25
3-2-2 水模周邊管線系統之配置.............................................................25
3-2-3 觀察系統之建立.............................................................................25
3-2-4 量測系統之建立.............................................................................26
3-3 實驗步驟.....................................................................................................28
3-3-1 流場觀測步驟.................................................................................28
3-3-2 H3BO3 沖蝕實驗步驟………..…………………………………..28
第四章結果與討論..................................................................................................36
4-1 氣泡型態與流場型式...…..........................................................................36
4-2 氣泡型態...…..............................................................................................37
4-2-1吹射分解後平均氣泡大小.................................................................37
4-2-2氣泡侵入深度.....................................................................................38
4-2-3液體噴濺高度.....................................................................................39
4-3 耐火材料的沖蝕....................................................................…................41
4-3-1 沖蝕後試片的外觀...........................................................................41
4-3-2 試片的侵蝕速率…………………………………………….……..42
4-3-3 液高對侵蝕率的影響............………………………………….......43
第五章結論………………………………………………………………………..86
未來工作建議事項......................................................................................................87
參考文獻…………………………………………………………………………..…88
1.吳秀佳, "熔融還原煉鐵爐中鐵浴的流場模擬與水模實驗", 國立成功大學碩士論文, 1998.
2.莊名超, "熔融還原煉鐵製程條件對鐵渣質傳影響之水模研究", 國立成功大學碩士論文, 1999.
3.蔡辛慈, 何忠根, 胡勝, 楊明恭, "新煉鐵製程發展近況", 技術與訓練, 22卷, 5期, 1997.10, p69.
4.北川 融(Toru Kitagawa), "新煉鐵製程DIOS技術介紹", 第20屆中日工程技術研討會, 1999.
5.M. Ishikawa, "Operation Results of the DIOS Pilot Plant", Ironmaking Conference Proceedings, pp415-420, 1996.
6.M. J. Corbett, "Process Developments in Coal-based Ironmaking", Transactions of the Institute of Mining and Metallurgy, Section C, vol.103, pp21-25, 1994.
7.M. Baba, "Current Status of JISF''s Direct Iron Ore Smelting Reduction Process", Transactions of the Institute of Mining and Metallurgy, Section C, vol.103, pp15-20, 1994.
8.J. Szekely, T. Lehner and C. W. Chang, "Flow Phenomena Mixing and Mass Transfer in Argon-Stirred Ladles", Ironmaking and Steelmaking, no.6, pp285-293, 1979.
9.J. Y. Zhang, S. S. Du, and S. K. Wei, "Flow Field in Bath Agitated by Symmetrically Placed Impinging Gas Jet and Submerged Gas Stream", Ironmaking and Steelmaking, vol.12, pp249-255, 1985.
10.M. Y. Zhu, T. Inomoto, L. Sawada, and T. C. Hsiao, "Fluid Flow and Mixing Phenomena in the Ladle Stirred by Argon Through Multi-Tuyere", ISIJ International, vol.35, pp472-479, 1995.
11.J. D. Hwang, Y. C. Lin, and W. S. Hwang, "Fluid Modeling of Gas Stirred Ladle with Immersion Hood", Materials Science and Technology, vol.6, pp376-382, 1990.
12.M. Iguchi, O.J. Ilegbusi, H. Ueda, T. Kuranga, and Z.I. Morita, "Water Model Experiment on the Liquid Flow Behavior in a Bottom Blown Bath with Top Layer", Metallurgical and Materials Transactions B, vol.27B, pp35-41, 1996.
13.E. O. Hoefele and J. K. Brimacombe, "Flow Regimes in Submerged Gas Injection", Metallurgical Transactions B, vol.10B, pp 462-469 1979.
14.Y. Ozawa and K. Mori, "Characteristics of Jetting Observed in Gas Injection into Liquid", Transactions ISIJ, vol.23, pp764-768, 1983.
15.S. H. Kim and R. J. Fruehan, "Physical Modeling of Liquid/Liquid Mass Transfer in Gas Stirring Ladles", Metallurgical Transactions B, vol.18B, pp381-390, 1987.
16.D. Mazumdar and R. I. L. Guthrie, "Hydrodynamic Modeling of Some Gas Injection Procedures in Ladle Metallurgy Operations", Metallurgical Transactions B, vol.16B, pp83-90, 1985.
17.D. Mazumdar and R. I. L. Guthrie, "Scaling Equations For Gas Stirred Ladle Systems", Proceedings of the Sixth International Iron and Steel Congress, pp460-468, 1990.
18.R. I. L. Guthrie, "Physical and Mathematical Models for Ladle Metallurgy Operations", Mathematical Modeling of Materials Processing Operations, Conference Proceeding, pp447-482, 1987.
19.Kenneth S. Suslick, "The Chemical Effects of Ultrasonic", Scientific American, pp80-86, Feb. 1989.
20.T. Aoki , S. Masuda , A. Hatono , M. Taga, Proceedings International Conference on Injection Phenomena I Extraction and Refining(Wraith A edition), Vol. 1, Department of Metal and Engineering Materials, University of Newcastle upon Tyne, 1982.
21.K. Suzuki, M. Takana, K. Nakanishi, I. Mastuno, "Water Model Experiments on Two-dimensional Velocity Distributions of Liquid Steel near the Bottom of a Top-and Bottom-Blowing Converter", Trans. ISIJ, vol.22B, p237, 1982.
22.Christopher E. Brennen, "Cavitation and Bubble Dynamics", Oxford Engineering Science Series 44, 1995.
23.R.T. Knapp, J.W. Daily, Hammit FG, "Cavitation", McGraw-Hill, New York, 1970.
24.Qi-Xing Yang, Hakan Gustavsson, "Effects of gas jet instability on refractory wear - A Study by High-Speed Photography", Scandinavian Journal of Metallurgy, vol.21, pp15-26, 1992.
25.Qi-Xing Yang, Hakan Gustavsson, Eric Burstromm "Erosion of Refractory During Gas Injection - A Cavitation Based Model", Scandinavian Journal of Metallurgy, vol.19, pp127-136, 1990.
26.Naude, C.F. and Ellis, A.T., "On the Mechanism of Cavitation Damage by Non-hemispherical Cavities in Contact with a Solid Boundary." ASME. Journal of Basic Engineering, vol.83, pp648-685, 1961.
27.Benjamin, T.B. and Ellis A.T., "The Collapse of Cavitation Bubbles and the Pressure Thereby Produced Against Solid Boundaries." Phil. Trans. Roy. Soc. London, Ser. A, vol.260, pp221-240,1966.
28.M.S. Plesset and A. Prosperetti, "Bubble Dynamics and Cavitation.", Annual Review Fluid Mechanics, vol.9, pp145-185, 1977.
29.A.H. Castillejos and J.K. Briimacombe, "Physical characteristics of gas jets injected vertically upward into liquid metal", Metallurgical Transactions, vol.20, pp595-601, 1989.
30.D. Mazumdar and R.I.L. Guthrrie, "Motion of alloying addition in the CAS steelmaking operation", Metallurgical Transactions, vol.24, pp649-655, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top