跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡世鴻
研究生(外文):Shih-Hung Tsai
論文名稱:球腳格狀陣列之有限元素熱應力分析
論文名稱(外文):Finite Element Analysis for Thermal Stress of Ball Grid Array (BGA) Package
指導教授:陳立軒陳立軒引用關係徐祥禎徐祥禎引用關係
指導教授(外文):Lih-Shan ChenHsiang-Chen Hsu
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:82
中文關鍵詞:球腳格狀陣列熱應力有限元素分析
外文關鍵詞:Ball Grid ArrayThermal StressFinite Element Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今的電子產業蓬勃發展,在晶片尺寸的縮小與運算速度的增加下,許多以往常用的封裝技術,漸漸的受到挑戰而需要開發新的技術,而新技術中球腳格狀陣列 (BGA) 的技術就是一項熱門的研究,本文就是利用有限元素分析軟體ANSYS 5.52來針對錫球與基板間的接合,所產生的熱應力進行分析,希望能藉由改變錫球的數目、錫球間的間距、錫球的排列位置,而有更進一步的認識,以其能夠順利找出降低熱應力的方法,另外還針對錫球與基板間可能產生的孔洞現象作一模擬分析,藉以預防構裝過程中因為加熱所產生的諸多問題,提高產品的可靠度,因此本文對於業界進行此一產品的研發時,可以作為參考的範例。

We have developed an improved three-dimensional finite element coupled model of Ball Grid Array (BGA) by using ANSYS finite element simulation codes. This model takes into account the mechanical properties of substrates during the processes. In this paper, both two-dimensional and three-dimensional BGA thermal analyses have been carefully studied. The model has been used to study the effect of radius of solder and the void on the thermal-induced substrate stresses. The steady-state temperature and thermal stress distributions (contours) in the solders and substrates were predicted. Numerical simulations show good agreement with the existing two-dimensional model. In addition, a parametric study is presented to illustrate the influences of the radius and number of solders, the size of voids and the layer of substrates. This database is then used to obtain the empirical correlation for the restrained peak thermal stress as function of the radius, pitch and number of solders. It is found that the peak of thermal stress significantly increases as the radius of solder is decreased at same pitch. An increase in the pitch results in a decrease in the peak thermal stress for all number of solders. The reliability of BGA package is dramatically improved by decreasing the peak thermal stress. These empirical correlations would be very useful to design engineers in selecting the number of solders with substrates to reduce the peak stress on the critical electronic devices.

目錄
摘要…………………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅱ
目錄…………………………………………………………………Ⅲ
圖目錄………………………………………………………………Ⅵ
表目錄………………………………………………………………Ⅸ
第一章緒論…………………………………………………1
1-1 前言……………………………………………………1
1-2 研究動機………………………………………………3
1-3 文獻回顧………………………………………………4
1-4 論文架構………………………………………………5
第二章 理論分析與模型建立…………………………………6
2-0 相關應力敘述…………………………………………6
2-1 熱彈性之基本方程式…………………………………8
2-2 等向性熱分析之理論…………………………………10
2-2-1 等向性熱應力理論……………………………10
2-2-2 應力與應變關係………………………………14
2-2-3 破壞能量理論…………………………………15
2-3 模型假設與建立………………………………………16
2-3-1 預設條件………………………………………17
2-3-2 初始條件與設計參數之假設…………………17
2-3-3 材料的匹配性與介面應力的關係……………21
2-4 有限元素軟體ANSYS 之操作步驟……………………23
第三章 結果與討論……………………………………………30
3-1 Two Dimension 基板與基板的結合方面……………30
3-1-1 雙層基板與三層基板的結合…………………30
3-1-2 由不同厚度的情況考慮………………………31
3-1-3 基板相接合的形變圖…………………………33
3-2 Two Dimension 基板與錫球的結合方面……………37
3-2-1 錫球大小對基板的應力影響…………………37
3-2-2 錫球含孔洞的現象……………………………39
3-2-3 錫球與基板連接之形變圖……………………43
3-3 Three Dimension 基板與基板的結合方面…………46
3-3-1 不同中間層厚度的三層基板結合……………46
3-3-2 不同厚度的三層基板形變圖…………………47
3-4 Three Dimension 基板與錫球的結合方面…………49
3-4-1 基板與單一錫球連結…………………………49
3-4-1-1 錫球位置分析……………………………49
3-4-1-2 形變圖……………………………………50
3-4-1-3 錫球大小對應力的影響…………………52
3-4-2 三維錫球孔洞缺陷應力模擬…………………53
3-4-2-1 孔洞大小對基板的影響…………………53
3-4-2-2 三維孔洞與二維孔洞的比較……………55
3-4-3 雙錫球與基板連結……………………………55
3-4-3-1 錫球大小對基板的影響…………………55
3-4-3-2 錫球位置對基板的影響…………………57
3-4-3-3 形變圖……………………………………58
3-4-4 四顆錫球與基板連結…………………………60
3-4-4-1 錫球大小對基板的影響…………………60
3-4-5 二十五顆錫球與基板連結……………………63
3-4-5-1 錫球大小對基板的影響…………………63
3-4-6 多數量的錫球與基板連結……………………66
3-4-6-1 錫球大小對基板的影響…………………66
3-4-7 多數量的錫球與基板連結之形變圖的比較…71
第四章 結論與未來研究方向…………………………………76
參考文獻 ………………………………………………………79

[1] W. T. Chen and C. W. Nelson, “Thermal Stress in Bonded
Joints”, IBM J. Res. Develop, Vol.23, No. 2, pp.178-188,
1979.
[2] J. H. Chen, “A Note on the Calculation of Thermal
Stresses in Electronic Packaging by Finite Methods”,
Transactions of ASME,Journal of Electronic Packaging, Vol.
111, pp. 313-320, 1989.
[3] Wan-Lee Yin, “Thermal Stresses and Free-Edge Effect in
Laminated Beams: A Variation Approach Using-Stress
Function”, Journal of Electronic Packaging, Vol.113, pp.
68-75, March 1991.
[4] Masato Tanaka, Yukiharu Takeuchi, “Thermal Analysis of
Plastic QFP with High Thermal Dissipation”, IEEE. 0569-
5503 /92 / 0000 - 0332 $3.00, pp. 332-339, 1992.
[5] A. Mertol, “Stress Analysis and Thermal Characterization
of a High Pin Count PQFP”, Transactions of ASME, Journal
of Electronic Packaging, Vol. 114, pp. 211-220, 1992.
[6] S. C. Lai, J. Y. Lai, C. R. Chen, M. H. Pu, T. D. Her and
Carl Chen, “Thermal Enhancement in QFP Package”, Tenth
IEEE Semi-Thern, pp. 1-10, 1993.
[7] Darvin Edwards, Ming Hwang, Bill Stearn, “Thermal
Enhancement of IC Packages”, Tenth IEEE Semi-Therm, pp.
33-43, 1994
[8] Iwao Kitazawa, Shinji Mino, “A Study on Thermal Stress
Reliability of Si-Based PLC Substrate”, IEEE Transaction
on Components, Package, and Manufacturing Technology-Part
A. Vol. 20, no 3, pp.327-333, 1997.
[9] Bor Zen Hong and Lioyd G. Burrell, “Molding Thermal
Induced Viscoplastic Deformation and Low Cycle Fatigue of
CBGA Solder Joints in a Surface Mount Package”, IEEE
Transaction on Component, Package, and Manufacture
Technology-Part A Vol. 20, no. 3, pp. 280-285, September,
1997.
[10] Kuo-Ning Chiang, “On Enhancing Eutectic Solder Joint
Reliability Using A 2nd —reflow-Process Approach”,
Thermal-Mechanical Characterization of Evolving Package
Material, EEP-Vol. 24, pp. 21-25, 1998.
[11] Lau, John H., “Thermal Stress and Strain in
Microelectronics Packaging”, pp7-15, 1993.
[12] 錢偉長, “彈性力學”, pp 11-22, 1993.
[13] Michael Pecht, “Integrated Circuit, Hybrid, and Multi-
chip Module Package Design Guidelines”, 1993.
[14] L. S. Goldmann, P. A. Totta, ”Area Array Solder
Interconnection for VLSI”, Solid State Technology, pp. 93-
99, June 1983.
[15] Benkamin Beker, George Cokkinides, Amit P. Agrawal,
“Electrical Modeling of CBGA Packages”, IEEE , pp. 251-
254, 1995.
[16] ANSYS Basic Analysis Procedures Guide, Ansys, Inc. 1998.
[17] ANSYS Theory Reference. 00656. Seventh. SAS IP, Inc 1994.
[18] 陳國明, 「BGA電子構裝結構之熱阻模擬與量測」, ANSYS應用技術
通訊, 第五期, 1998.
[19] 陳志中, 「電子構裝BGA熱應力數值分析」, 國立成功大學工程科學
研究所碩士論文, 1998.
[20] Qiang Yu, Masaki Shiratori and Yoichi Ohshima, ”A Study
of The Effects of BGA Solder Geometry on Fatigue and
Reliability Assessment”, IEEE InterSociety Conference on
Thermal Phenomena, pp. 229-235, 1998.
[21] Atlia Metrol, “Thermal Performance Comparison of High Pin
Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA)
Packages”, IEEE InterSociety Conference on Thermal
Phenomena, pp. 140-150, 1996.
[22] John H. Lau, “ Ball Grid Array Tech- nology”, 1995.
[23] Diethich E. Riemer, “Thermal-Stress Analysis with
Electrical Equivalents”, IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, vol. 13. no. 1,
March 1990.
[24] John H. Lau, “Electronics Packaging Technology Update:
BGA, CSP, DCA, and Flip Chip”, pp. 32-36, IEMT/IMC
Proceedings, 1997.
[25] Hideo Aoki, Chiaki Takubo, Takahito Nakazawa, Soichi
Honma, Kazuhide Doi, Masahiro Miyata, Hirokazu Ezawa and
Yoichi Hiruta, “Eutectic Solder Flip Chip Technology —
Bumping and Assembly Process Development for CSP.BGA”,
IEEE Electronic Components and Technology Conference, pp.
325-330, 1997.
[26] Kevin Chaing, Alice Huang, J. Y. Lai, Tom Tang, Candy
Tien, Tzong Dar Her and Carl Chen, “Evaluating the
Electrical Parasitics of Ball Grid Array Type Packages”,
SEMI Technical Programs Present, pp. 143-156, 1998.
[27] 洪子聖, “銲錫球列構裝之電性參數量測迷你與訊號整合分析”,
行政院國家科學委員會專題研究計劃成果報告, pp. 241-248,
1998.
[28] Q. Yu, T. Kashiwamura, M. Shiratori and K. Satoh
“Reliability and Structure Optimization of BGA Package”,
ASME Advances in Electronic Packaging, EEP-Vol.19-2, pp.
1761-1767, 1997.
[29] B.R. Simon, Z.J. Staszak, J.L. Prince, Y. Yuan and J.R.
Umaretlya, “Improved Finite Element Models of
Thermal/Mechanical Effects in VLSI Package”, in Proc. 8th
Ann. Int. Electronics Packaging Conf., Dallas TX,
Nov.,pp.6-10, 1989.
[30] B.R. Simon, Y. Yuan, J.R. Umaretlya and R. Bavirisetty,
“Thermal and Mechanical Finite Element Analysis of a VLSI
Package Including Spatially Varying Thermal Contact
Resistance”, 6th IEEE Semi-Therm Symposium, pp.74-81,
1990.
[31] Ilya B. Mirman, “Effect of Peeling Stresses in Bimaterial
Assembly”, Tranxactions of ASME, Journal of Electronic
Packaging, Vol.113, pp. 431-433, 1991.
[32] 黃國亮 , 陳昭亮, “IC構裝製程與設備簡介” 機械工業期刊,
1998.
[33] Masazumi Amagai, “Investigation of Stress Singularity
Fields and Stress Intersity Factor for Crack”, IEEE, pp
246-257, 1996.
[34] 劉時宏,「電子封裝之熱應力分析」, 國立成功大學機械工程
研究所碩士論文, 1999.
[35] Hsiang-Chen Hsu, Lih-Shan Chen, Shih-Hung Tsai, Wen-Kwei
Huang, “ Finite Element Analysis for Thermal Stress and
Mechanics of Ball Grid Array (BGA) Package”, IMAPS Taiwan
Technical Symposium pp 139-149, 2000.
[36] Hsiang-Chen Hsu, Lih-Shan Chen, Shih-Hung Tsai, Wen-Kwei
Huang, “Finite Element Thermal Stress Prediction on BGA
Package”, Symposium on Nano Device Technology pp. 201-
203, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top