跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋柏韶
研究生(外文):Bo-Shao Soong
論文名稱:不同劑量的珈瑪輻射射線對氮化鎵薄膜與金/氮化鎵蕭特基二極體光電特性的影響
論文名稱(外文):Different Doses of Gamma-Ray Irradiation Effect on the Optoelectronic Characteristics of GaN Thin Films and Au/GaN Schottky Diodes
指導教授:王欽戊橫山明聰
指導教授(外文):Ching-Wu WangMeiso Yokoyama
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:62
中文關鍵詞:珈瑪輻射射線氮化鎵蕭特基二極體濺鍍法深能階缺陷深能階暫態頻譜量測黃色激光深能階暫態頻譜儀
外文關鍵詞:gamma-ray irradiationGaNSchottky diodessputtering methoddeep level defectsDLTSyellow band emissiondeep level transient spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:668
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本碩士論文之題目為“不同劑量的珈瑪輻射射線對氮化鎵薄膜與金/氮化鎵蕭特基二極體光電特性的影響”。以濺鍍法所成長的氮化鎵薄膜在珈瑪輻射射線照射前/後的微結構、光特性已被有系統地研究。分析的結果顯示,隨著珈瑪射線劑量增加時,氮化鎵薄膜內會產生更多的深能階缺陷,而這不但會產生深能階激光與黃色激光,還會破壞薄膜的結晶性。
我們由深能階暫態頻譜儀偵測到至少兩個深能階缺陷(Et1與Et2),其能階位置分別在導電帶下方0.59 ± 0.02 eV與0.82 ± 0.02 eV,且是由珈瑪射線照射所產生。我們認為Et1缺陷是由氮空缺所產生的,而Et2缺陷是鎵與氫的複合物所產生的。
此外,我們還使用了電流─電壓量測法來評估與比較金/氮化鎵蕭特基二極體在被珈碼輻射射線照射前/後電特性的變化情形。電流─電壓量測結果顯示照射較高劑量珈瑪輻射射線的金/氮化鎵蕭特基二極體擁有比較良好的順向導通電性:較小的導通電壓與較大的導通電流。相較之下,在逆向偏壓時,照射較高珈瑪輻射射線的試片有較差的電特性:較大的漏電流與較小的崩潰電壓。
The title of this thesis is “Different Doses of Gamma-Ray Irradiation Effect on Optoelectronic Characteristics of GaN Thin Films and Au/GaN Schottky Diodes”. The microstructural and luminescent properties of sputtered GaN thin films pre-irradiated and gamma-ray irradiated were systematically investigated. Analytical results revealed that the increasing doses of gamma-rays could enhance the occurrence of more deep level defects, which not only created a prominent deep level luminescence and yellow band emission but also destroyed the crystallinity of GaN thin films.
Deep level transient spectroscopy (DLTS) showed that at least two traps (Et1 and Et2), with energy levels at 0.59± 0.02 eV, 0.82± 0.02 eV below the conduction band, were introduced in the GaN thin film during gamma-ray irradiation. The Et1 trap has similar electronic properties as a radiation induced defect in GaN speculated to be the nitrogen vacancy, while the Et2 trap deduced as Ga-H complexes.
Moreover, we have used current-voltage (I-V) measurements to assess and compare the electrical characteristics of Au/GaN Schottky diodes which GaN thin film is irradiated by different doses of gamma-ray-irradiation treatment. These I-V measurements revealed that higher dose of gamma-ray-irradiated GaN samples exhibited superior forward conducting characteristics: smaller turn-on voltage and bigger forward conducting current. In contrast, higher dose of gamma-ray-irradiated GaN samples in the reverse-biased condition had poor characteristics: the larger leakage current and smaller breakdown voltage.

CONTENTS
Publications and Preprints.....I
Abstract (in Chinese)..........IV
Abstract (in English)..........V
ACKNOWLEDGEMENTS...............VII
CONTENTS.......................IX
TABLE CAPTION..................XII
FIGURE CAPTION.................XIII
Chapter 1 Introduction............................1
1.1 Propertiesand Application of GaN.....1
1.2 Proposes of This Work................2
1.3 Outline of This Thesis...............3
Chapter 2 Growth of n-GaN Thin Films..............5
2.1 Introduction.........................5
2.2 Radio-Frequency Magnetron Sputtering System....5
2.3 Growth of Sputtered-GaN Thin Films...7
2.3.1 Substrates and cleaning............7
2.3.2 Growth Process.....................8
2.4 Characterization of GaN Thin Films...8
2.4.1 X-ray Diffraction..................8
2.4.2 Photoluminescence..................9
2.4.3 Deep Level Transient Spectroscopy..9
2.4.4 Secondary Ion Mass Spectrometry....9
2.4.5 Fouier Transform Infrared Spectroscopy ..10
Chapter 3 Metal Contacts to n-GaN Thin Films......11
3.1 Introduction.........................11
3.2 Ohmic and Schottky Contacts..........12
3.2.1 Initial Cleaning of GaN (Film)/Si (Substrate) Samples...........................................12
3.2.2 Metal Deposition...................12
3.2.3 Rapid Thermal Annealing for Ohmic Contact....13
3.3 Characterization of Contacts.........13
3.3.1 Current-Voltage Measurement........13
3.3.2 Deep Level Transient Spectroscopy..13
Chapter 4 Different Doses of Gamma-Ray Irradiation Effect on the Optoelectronic Characteristics of GaN Thin Films and Au/GaN Schottky Diodes...................................14
4.1 Introduction.........................14
4.2 Samples Preparation and Experiments..15
4.3 Experiment Results and Discussion....17
4.4 Conclusion...........................21
Chapter 5 Conclusions.............................23
REFERENCES
TABLES
FIGURES
BIOGRAPHY

REFERENCE
1. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 28 (1994).
2. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki. Jpn. J. Appl. Phys. 28, L2112 (1989).
3. S. Nakamura, M. Sinoh, and T. Mukai, Jpn. J. Appl. Phys. 30, L1998 (1991).
4. M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, Appl. Phys. Lett. 60, 3027 (1992).
5. H. Amano et al, Appl. Phys. Lett. 64, 14 (1994).
6. S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 32, Pt. 2, 1258 (1993).
7. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 62, 10 (1993).
8. Barbaba et al. Appl. Phys. Lett. 62, 25 (1993).
9. M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, Appl. Phys. Lett. 62, 1786 (1993).
10. M. Asif Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
11. M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, Appl. Phys. Lett. 63, 1 (1988).
12. S. Nakamura, M. Senoh, S. Nagahama, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and T. Mukai, Jpn. J. Appl. Phys. 38, part 2, No. 3A, L226 (1999).
13. H. Shen, J. Pamulapati, M. Taysing, M. C. Wood, R. T. Lareau, M. H. Ervin, J. D. Mackenzie, C. R. Abernathy, S. J. Pearton, F. Ren, and J. M. Zavada, Solid-State Elec. 43, 1231 (1999).
14. T. Ogino, and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).
15. E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, Jr., M. A. Khan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B 51, 13326 (1995).
16. E. Calleja, F. J. Sanchez, D. Bassak, M. A. Sanchez-Garica, E. Munoz, I. Izpura, F. Calle, J. M. G. Tijero, J. L. Sanchez-Rojas, B. Beaumont, P. Lorenzini, and P. Gibart, Phys. Rev. B 55, 4689 (1997).
17. V. V. Emtsev, V. Yu. Davydov, I. N. Goncharuk, E. V. Kalinina, V. V. Kozlovskii, D. S. Poloskin, A. V. Sakharov, N. M. Shmidt, A. N. Smirnov, and A. S. Usikov, Materials Science Forum 258-263, 1143 (1997).
18. J. L. Cantin, H. J. von Bardeleben and J. L. Autran, IEEE Trans. on Nuclear Scinece 45, No. 3, 1407 (1998).
19. F. D. Auret, S. A. Goodman, and W. E. Meyer, Materials Science Forum 196-201, 1067 (1995).
20. W. A. Barry and G. D. Watkins, Phys. Rev. B 54, 7789 (1996).
21. S. Nakamura, Y. Harada, and M. Seno, Appl. Phys. Lett. 58, 2021 (1991).
22. S. Yoshida, S. Misawa, and S. Gonda, J. Vac. Sci. Technol. B 1, 250 (1983).
23. T. Suski, P. Perlin, H. Teisseyre, M. Leszcynski, I. Grzegory, J. Jun, M. Bockowski, S. Porowski, and T. D. Moustakas, Appl. Phys. Lett. 67, 2188 (1995).
24. E. Calleja, F. J. Sanchez, D. Basak, M. A. Sanchez-Gracia, E. Munoz, I. Izpura, F. Calle, J. M. G. Tijero, B. Beaumont, P. Lorenzini, and P. Gibart, Phys. Rev. B 55, 4689 (1997).
25. Ching-Wu Wang, Jin-Yuan Liao, Chih-Liang Chen, Wen-Kuan Lin, Yan-Kuin Su, and Meiso Yokoyama, J. Vac. Sci. Technol. B 17, 1545 (1999).
26. Z. Q. He, X. M. Ding, X. Y. Hou, and X. Wang, Appl. Phys. Lett. 64, 315 (1994).
27. P. Singh, J. M. Corbett, J. B. Webb, S. Charbonneau, F. Yang, M. D. Robertson, J. Vac. Sci. Technol. A 16, 786 (1998).
28. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys. Lett. 63, 2676 (1993).
29. M. E. Lin, F. Y. Huang, and H. Morkoc, Appl. Phys. Lett. 64, 103 (1994).
30. M. E. Lin, F. Y. Huang, and H. Morkoc, Appl. Phys. Lett. 64, 2064 (1994).
31. H. Shen, J. Pamulapati, M. Taysing, M. C. Wood, R. T. Lareau, M. H. Ervin, J. D. Mackenzie, C. R. Abernathy, S. J. Pearton, F. Ren, and J. M. Zavada, Solid-State Elec. 43, 1231 (1999).
32. S. Nakamura, M. Senoh, S. Nagahama, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and T. Mukai, Jpn. J. Appl. Phys. 38, part 2, No. 3A, L226 (1999).
33. M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oson, Appl. Phys. Lett. 62, 1786 (1993).
34. M. Asif Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
35. M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, Appl. Phys. Lett. 60, 2917 (1992).
36. F. Binet, J. Y. Duboz, N. Laurent, E. Rosencher, O. Briot, and R. L. Aulombard, J. Appl. Phys. 81, 6449 (1997).
37. Gerard T. Dang, Aping P. Zhang, Fan Ren, Xianan A. Cao, Stephen J. Pearton, Hyun Cho, Jung Han, Jenn-Inn Chyi, C.-M. Lee, C.-C. Chuo, S. N. George Chu, and Robert G. Wilson, IEEE Trans. on Electron Devices 47, No. 4, 692 (2000).
38. J. S. Foresi and T. D. Moustakas, Appl. Phys. Lett. 62, 2859 (1993).
39. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys. Lett. 63, 2676 (1993).
40. S. C. Binari, H. B. Dietrich, G. Kelner, L. B. Rowland, K. Doverspike, and D. K. Gaskill, Electron. Lett. 30, 909 (1994).
41. V. V. Emtsev, V. Yu. Davydov, I. N. Goncharuk, E. V. Kalinina, V. V. Kozlovskii, D. S. Poloskin, A. V. Sakharov, N. M. Shmidt, A. N. Smirnov, and A. S. Usikov, Materials Science Forum 258-263, 1143 (1997).
42. P. F. Lugakov, and T. A. Lukashevich, Phys. Stat. Sol. (a)110, 403 (1988).
43. J. L. Cantin, H. J. von Bardeleben and J. L. Autran, IEEE Trans. on Nuclear Scinece 45, No. 3, 1407 (1998).
44. B. Ziebro, J. W. Hemsky, and D. C. Look, J. Appl. Phys. 72, 78 (1992).
45. D. C. Look, Z-Q. Fang, J. W. Hensky, and P. Kengkan, Phys. Rev. B 55, 2214 (1997).
46. D. Pons and J. C. Bourgoin, J. Phys C: Solid State Phys 18, 3839 (1985).
47. V. N. Brudnyi, V. V. Peshev, and S. V. Smorodinov, Phys. Stat. Sol. (a)128, 311 (1991).
48. V. N. Brudnyi, V. V. Peshev, and S. V. Smorodinov, Phys. Stat. Sol. (a)114, K139 (1989).
49. W. A. Barry and G. D. Watkins, Phys. Rev. B 54, 7789 (1996).
50. D. V. Lang, J. Appl. Phys. 45, 3023 (1974).
51. L. S. Yu, Q. Z. Liu, Q. J. Xing, D. J. Qiao, S. S. Lau, and J. Redwing, J. Appl. Phys. 84 (4), 2099 (1998).
52. Q. Z. Liu, L. S. Yu, S. S. Lau, J. M. Redwing, N. R. Perkins, and T. F. Kuech, Appl. Phys. Lett. 70 (10), 1275 (1997).
53. J. K. Luo, and H. Thomas, Appl. Phys. Lett. 62 (7), 705 (1993).
54. M. H. Park, C. L. Yeh, L. C. Wang, F. Deng, Q. Z. Liu, A. R. Clawson, S. S. Lau, J. Appl. Phys. 77 (5), 2056 (1995).
55. T. Sasaki and T. Matsuoka, J. Appl. Phys. 77, 192 (1995).
56. R. Dingle, D. D. Sell, S. E. Stokowski, and M. Ilegems, Phys. Rev. B4, 1211 (1971).
57. Z. C. Huang, J. C. Chen, and D. Wickenden, J. Cryst. Growth 170, 362 (1997).
58. S. J. Pearton, C. R. Abernathy, R. C. Wilson, J. M. Zarada, C. Y. Song, M. G. Weinstein, M. Stavola, J. Han, and R. J. Shul, Nuclear Instruments and Methods in Physics Research B 147, 171 (1999).
59. L. D. Bell, R. P. Smith, B. T. McDermott, E. R. Gertner, R. Pittman, R. L. Pierson, and G. J. Sullivan, J. Vac. Sci. Technol. B 16 (4), 2286 (1998).
60. C. I. Wu and A. Kahn, J. Vac. Sci. Technol. B 16 (4), 2218 (1998).
61. A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, Semic. Sci. Technol. 11, 1464 (1996).
62. Y. Kribes, I. Harrison, B. Tuck, T. S. Cheng, and C. T. Foxon, Semic. Sci. Techol. 12, 913 (1997).
63. S. M. Sze, Physics of Semiconductor Devices, 2nd Ed.,Wiley, New York, 166 (1981).
64. C. Y. Wu, J. Appl. Phys. 53, 5947 (1982).
65. J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, J. Appl. Phys. 83 (6), 3172 (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪榮昭(民85a)技術教育訓練的需求分析方式。就業與訓練,14(5),40-45。
2. 洪榮昭(民85b)因應亞太營運中心的設立如何提升職業訓練的功能。就業與訓練,14(4),39-43。
3. 王千倖(民87)以網路上的電子腦力激盪系統培養教師和學生的科學創造力。遠距教育,5,47-51。
4. 洪榮昭 許書務(民86) 我國能力發展資訊系統之建立。 就業與訓練 (雙月刊),15(1), 73-78.
5. 許書務(民86a) 英國教師培訓機構(TTA)簡介。教育研究資訊.,5(3),144-149.
6. 周談輝、林益昌(民88)迎向學習型組織。人力培訓專刊,88年2月號,2-5。
7. 李錫津(民87)輔導的另類思考。教師天地,91,29-31。
8. 李錫津(民79)自然科創造思考教學要領。國教月刊,36(7),35-37。
9. 毛連塭(民78)實施創造思考教育的參考架構。創造思考教育,創刊號,2-9。
10. 毛連塭 (民87) 激發組織創造力, 提昇國家競爭力。創造思考教育, 8 , 1-5。
11. 李清吟(民84)臺北工專電機工程科「專題製作」課程之規劃與實施。技術學刊,10(3),299-304。
12. 許書務(民85b) 專科校訂課程專業科目及內容決定之策略--以電子工程科為例。亞東工業專科學校學報, 16,9/1-9/8.
13. 陳玉蘭(民87)教專班學生學習型態之探討。國立高雄師範大學教育學系教育學刊,14,207-229。
14. 洪榮昭、陳亞玲(民87)企業學習組織之探討。就業與訓練,16(5),頁73-85。
15. 蔡錫濤(民84)國中生活科技內涵及教學策略之探討。中學工藝教育月刊,28(1),10-15。