跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 12:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂泰億
研究生(外文):Tay-Ih Leu
論文名稱:一子空間自主式等化器設計並利用Viterbi演算法應用於碼域多址連接通訊系統
論文名稱(外文):A subspace blind equalizer design using viterbi-algorithm for code division multiple access systems
指導教授:李俊男李俊男引用關係
指導教授(外文):Jin-Nan Li
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:38
中文關鍵詞:自主式等化器分碼多重接取Viterbi-演算法高階統計訊號動量碼際間干擾多重接取干擾
外文關鍵詞:Blind equalizerCDMAViterbi-algorithmhigher order momentsintersymbol interference(ISI)multiple access interference(MAI)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1032
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以一自主式等化器(blind equalizer)及多用戶偵測(multiuser detection)技術應用於分碼多重接取(CDMA)行動無線通道上。無線分碼多重接取(wireless CDMA)技術是當前數位通訊中最重要的研究課題之一。尤其是在資料傳輸率每秒達數仟萬位元的系統上或傳輸率更高的ATM無線多媒體應用上更佔有重要的角色。
一般的低傳輸率的CDMA系統,在設計及分析上,經常將碼際間干擾(lntersymbol lnterference(ISl))忽略不計。然而在高傳輸率CDMA系統,不僅無法將碼際間干擾(ISI)省略不計,連帶也出現了多重接取干擾(Multiple Access interference(MAI))。
傳統的信號偵測方法必須使用一參考信號(reference signal)方可將信號順利攫取(extraction),這種方法應用於多用戶(multiuser)通訊系統有極大的限制。本文發展一自主式技術(blind techniques);單單利用輸出端信號就可以將多用戶(multiuser)信號檢測出來。
一般自主式信號分離技術是使用接收端信號之高階統計動量(higher order moments);這類方法主要缺點是收斂速度太慢,不適用於時變通道(time variant channel) CDMA行動無線通訊系統上。
本文直接由接收端信號(receiver signal)二階統計量(second order statistics)分析著手,並使用一快速收斂之非線性自主式等化器結構:即以奇異值分解(singular value decomposition(SVD))技術來產生虛擬通道(virtual channel) ;再以Viterbi演算法為架構配合虛擬通道(virtual channel)來估測出多用戶(multiuser)信號。最後將設計方法應用於多用戶CDMA行動通訊系統上。

In this paper, a blind equalization by adaptive matrix singular value decomposition (SVD) and Viterbi algorithm is developed and investigated for high-rate code division multiple access (CDMA) mobile radio channels. The design of wireless CDMA network is one of the most important research topic of digital communications; especially for data on the order of 1-10’s of megabits per second, or even higher asynchronous mode (ATM)-compatible rate for wireless multimedia application.
In the design and analysis of the low-rate CDMA systems, the presence of intersymbol interference (ISI) is often neglected. However, for the high-rate CDMA systems, the ISI is no longer negligible and, in fact, together with the multiple-access interference (MAI).
Conventional techniques of multi-user separation require a reference signal extraction loop or the transmission of training sequence. The blind equalization have the ability to detect the multi-user, given only the channel output without resorting to any training sequence. Many of the proposed blind technique usually incorporate the higher order statistical information of receiver signals. But most of them are with low convergence rate and not suitable for the time-variant in CDMA mobile radio systems. Unlike the blind equalization algorithm reported, we consider in this paper based on an adaptive matrix singular decomposition (SVD) for a virtual channel identification type operation and the Viterbi algorithm for multi-user symbol detection. Eventually the blind equalization techniques will be utilized with the CDMA mobile radio communication in practice.

目錄
中文摘要……………………………………………………………………………..Ⅰ
英文摘要……………………………………………………………………………..Ⅲ
目錄…………………………………………………………………………………..Ⅴ
圖目錄………………………………………………………………………………..Ⅵ
第一章 導論………………………………………………………………………..1
第二章 自主式等化器應用至多輸入多輸出系統………………………………..4
2-1 多輸入多輸出系統………………………………………………………….4
2-2 “奇異值分解(SVD)+Viterbi”演算法應用於多輸入多輸出系統….5
2-3 奇異值分解(SVD)定理…………………………………………………..8
2-4 Viterbi演算法……………………………………………………10
第三章 自主式演算法應用至碼域多址聯接系統…………………………12
3-1 多信號率多通道架構…………………………………………………..12
3-2 “奇異值分解(SVD )+Viterbi”演算法應用於CDMA上…………15
第四章 模擬………………………………………………………………………19
4-1 自主式等化器應用於CDMA系統(單一用戶)……………………..19
4-2 自主式等化器應用於CDMA系統(二個用戶)……………………..20
4-3 自主式等化器應用於CDMA系統(四個用戶)……………………..21
第五章 結論………………………………………………………………………33
參考文獻……………………………………………………………………………..35

參考文獻
[1]X. Wang and H.V. Poor, "Blind equalization and multiuser detection in dispersive CDMA channels," IEEE Trans. on Communication, vol. 46, no. I, pp. 91-103, Jan. ,1998.
[2]R.O. LaMaire et al, "Wireless lans and mobile networking: standard and future directions," IEEE Communication Mag., pp. 86-94, Aug. 1996.
[3]K. Pahlavan, T.J. Probert, and M.E. Chase, "Trends in local wireless networks," IEEE Communication Mag., pp.88-95, Mar. 1995.
[4]李珠串,陳錦洲,嚴劍琴’’Wireless ATM technologies of mobile broadband network’’ C.I.E.E .Magazine,pp.30-37,1998.
[5]D. Raychandhuri et al., "WATM net: a prototype wireless ATM system for multimedia personal communication," IEEE JSAC., pp. 83-95, Jan. 1997.
[6]P. Vandaele and M. Moonen, "An "SVD+Viterbi" algorithm for multiuser adaptive blind equalization of mobile radio channels," IEEE Signal Processing Letters, pp. 260-264, Oct. 1998.
[7]S. Haykin, Adaptive filter theory, ed., Prentice-Hall, 1996.
[8]J.-N. Li and M.-S. Ya, "Fast Maximum kurtosis deconvolution (MKD) blind equalizaion using least square lattice (LSL) algorithm, in Proceedings oflCSPAT97, pp-50-54, 1997.
[9]Hui Liu and M.D. Zoltowski, "Blind equalization in antenna array CDMA systems," IEEE Trans. on Signal Processing, pp. 161-172, Jan. 1997.
[10]H. V. Poor and G.W. Wonell, Wireless communications, Prentice-Hall, 1998
[11]J.Q. Bao and Lang Tong, "Applications of blind equalization in wireless ATM network." In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.3277-3280,1998.
[12]J.K.. Tugnait, "Adaptive blind deconvolution of MIMO channels using higher order statistics," in Proceedings of the thirty-first Asilomar Conference on Signals, Systems & Computers, pp. 468- 472.1997.
[13]Z. Malouche and O. Macchi, "Adaptive separation of an unknown number of sources," in Proceedings of the IEEE Signal Processing Workshop on Higher order Statistics, pp. 295-299, 1997.
[14]S. Choi and A. Cichocki, "A linear feedforward neural network with lateral feedback connections for blind source separation," in Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, pp.349-353, 1997.
[15]S. Ohne and X. Zuouye, "A least-squares interpretation of the single-stage maximization criterion for multichannel blind deconvolution," in Proceeding of ICASSP 1998, pp. 2101-2104,1998.
[16]L. Tong, G. Xu, B. Hassibi and T. Kailath, "Blind channel identification based on second-order statistics: A frequency domain approach," IEEE Trans. on Information Theory, pp. 329-334, Jan.1995.
[17]E. Serpedin and G.B. Giannakis, "Blind channel identification and equalization with modulation-induced cyclostationarity," IEEE Trans. on Signal Processing, pp. 1930-1944, July 1998.
[18]J.-N. Li,〝自主式等化器應用於泛歐蜂巢式無線通訊系統 NSC 87-2218-E-214-002國科會報告,〞1998.
[19]A.-J. Van der Veen, S. Talwar, and A. Paulraj, "A subspace approach to blind space-time signal processing for wireless communications systems," IEEE Trans. on Signal Processing, pp. 173-190, Jan. 1997.
[20]M.K. Tsatsanis and G.B. Giannakis, “ Blind estimation of direct sequence spread spectrum signals in multipath,” IEEE Trans. On Signal Processing, vol. 45, no. 5, pp. 1241-1252, May, 1997.
[21]Piet Vandaele and Marc Moonen,〝“An SVD+Viterbi”Algorithm for Multiuser Adaptive Blind Equalization of Mobile Radio Channels〞, IEEE Trans. On Signal Processing, vol. 5, no. 10, pp. 260-264,OCTOBER,1998.
[22]Haykin , “Adaptive Filter Theory”,Prentice Hall International Editions.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top