跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李洮俊
研究生(外文):Yau-Jiunn Lee
論文名稱:腎上腺及腎臟利鈉胜在維持体液平衡之研究
論文名稱(外文):A study of adrenal and renal synthesized natriuretic peptides in fluid homeostasis.
指導教授:蔡瑞熊蔡瑞熊引用關係賴永勳賴永勳引用關係
指導教授(外文):Juei-Hsiung TsaiYung-Hsiung Lai
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:181
中文關鍵詞:心房利鈉胜腦利鈉胜腎上腺腎臟體液平衡
外文關鍵詞:atrial natriuretic peptidebrain natriuretic peptideadrenal glandkidneyfluid homeostasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心房利鈉胜 (atrial natriuretic peptide, ANP) 是在1980年最早被發現的利鈉胜家族成員,是一種很強的血管擴張、利尿、利鈉及皮質醛酮分泌抑制的多胜。ANP 首先發現存在心房組織,在體液擴張狀態下,心房細胞被刺激而分泌ANP進入血液循環,引起利尿和利鈉作用,使體液回復平衡。ANP除了在心房細胞合成並分泌以外,研究發現心房以外的許多組織器官都可以合成及分泌ANP,如腦下垂體、心室、胸腺、主動脈、肺靜脈及神經節等。在1988年利鈉胜另一成員--腦利鈉胜 (brain natriuretic peptide, BNP)從豬腦萃取物中被分離出來,BNP與ANP類似,BNP主要存在於心臟組織,在體液平衡的維持亦擔負有重要的角色。研究指出,BNP除了主要在心臟可以合成及分泌之外,心臟以外之其它器官,亦皆被發現有BNP mRNA及蛋白質的存在,然而,對這些心臟以外的器官分泌利鈉胜的角色則所知有限。
由於腎上腺本身可能可以合成利鈉胜,且腎上腺皮質又是重要的利鈉胜作用部位,因此本研究假設腎上腺可能分泌利鈉胜以調節腎上腺機能,並參與體液及電解質平衡的維持。首先探討原發性皮質醛酮過多症病人腎上腺組織ANP及BNP合成的狀況。利用組織萃取及放射免疫分析發現相當多量的ANP及BNP免疫反應物質存在於原發性皮質醛酮過多症病人的正常非腫瘤腎上腺組織及捐腎者正常腎上腺組織,以高效率液態凝膠層析法(HP-GPC)分析ANP之分子形式發現主要為γ-hANP,也就是ANP的prehormone。以免疫組織化學方法利用特異性的BNP抗體染色研究發現腎上腺組織的BNP免疫反應物質主要存在於腎上腺髓質位置。進一步以原位雜交法,利用ANP 及BNP cRNA為探針,發現腎上腺髓質細胞含有ANP及BNP傳訊者核醣核酸(mRNA),證實腎上腺髓質細胞可以合成及分泌ANP及BNP。以北方點墨法比較正常人腎上腺與原發性皮質醛酮過多症病人的非腫瘤腎上腺組織的ANP及BNP mRNA含量,發現在原發性皮質醛酮過多症病人的腎上腺ANP 及BNP mRNA有明顯的上升。利用反轉錄及多聚鏈鎖反應技術(RT-PCR)實驗發現人類腎上腺組織可以選殖出BNP互補去氧核醣核酸(cDNA)。以核酸定序法證實BNP cDNA序列與心房組織所發現者相同。再利用半定量多聚鏈鎖反應方法發現原發性皮質醛酮過多症病人非腫瘤腎上腺組織ANP及BNP mRNA表現皆比正常人的腎上腺組織者為高,其中ANP mRNA含量遠比BNP mRNA為高,但是ANP/BNP mRNA比值則較正常人的腎上腺組織者為低。本項研究結果是首次發現人類腎上腺髓質可以合成ANP及BNP,同時腎上腺ANP及BNP的合成在原發性皮質醛酮過多症有增加的現象。這些結果支持腎上腺髓質ANP及BNP的合成可能扮演以旁分泌方式調節體液平衡或腎上腺皮質功能的假說。
腎上腺髓質既可以合成利鈉胜,而腎上腺皮質就是利鈉胜作用的目標之一。在解剖學上,腎上腺皮質及髓質來自不同胚胎來源,卻合在同一器官,因此認為腎上腺利鈉胜以旁分泌方式作用於皮質或髓質本身。利用免疫組織化學方法、電子顯微鏡和免疫電子顯微鏡術的研究,發現腎上腺髓質細胞和皮質細胞有互相混合的現象,在皮質部位可發現有分泌ANP的髓質細胞存在,在皮質細胞附近有神經突觸終末,在其內亦可見到ANP反應顆粒存在。顯微鏡下發現人類腎上腺靜脈為含有特殊肥厚呈螺旋排列之平滑肌細胞,因此,腎上腺髓質ANP可能經由腎上腺靜脈逆流、神經突觸或直接接觸方式作用於腎上腺皮質細胞。
腎臟也是ANP合成器官之一,但是其調節機轉及生理作用則仍不清楚。為探討腎臟內利鈉胜的合成在維持體液平衡之角色,將大白鼠以DOCA-鹽水模式造成體液變動後,以反轉錄一多聚鏈鎖反應法及放射免疫分析觀察腎臟利鈉胜mRNA、血液利鈉胜濃度及尿液利鈉胜排泄之變化。在DOCA-鹽水組大白鼠尿液鹽份排泄量、尿量及尿液ANP排泄量從第二天起明顯地比正常組者為多,同時尿液ANP排泄量與尿液鈉排泄量呈正相關。血漿ANP濃度在DOCA-鹽水組明顯地上升,而血漿腎素活性則相反地呈顯著的下降。利用免疫組織化學方法,以抗ProANP(1-30),ProANP(31-67)及α-ANP抗體,實驗發現ANP免疫反應物質存在腎臟的遠端及近端腎小管細胞。以反轉錄多聚鏈鎖反應,選殖及定序方法,發現ANP cDNA存在於腎臟組織,且其序列與心房ANP cDNA相同。利用半定量多聚鏈鎖反應及南方點墨法,研究發現左心室及腎臟皮質組織的ANP mRNA表現明顯地比正常組者為多。我們的結果證實腎臟為ANP合成器官,而腎臟ANP的合成在體液擴張下會被刺激而上升,本項研究認為腎臟ANP合成可能在體液電解質平衡的調節或皮質醛酮脫逃現象上扮有相當的角色。
本研究的結果顯示腎上腺皮質及髓質之間有互相影響之關係。此外,腎臟ANP的合成及分泌參與調節腎臟鹽分的排泄,此有助於了解腎臟本身如何調節體液平衡的機轉。總結研究結果:利鈉胜可能在腎上腺及腎臟是經由旁分泌的方式來調節腎上腺及腎臟自身的功能以維持體液之平衡。
Atrial natriuretic peptide (ANP), a peptide with potent diuretic, natriuretic, vasorelaxant, and aldosterone inhibiting activities, was isolated and identified from rat and human atrial tissues. Originally found in mammalian atria, ANP is not exclusively a cardiac hormone. In 1988, brain natriuretic peptide (BNP) was isolated from the porcine brain by Sudoh et al. BNP, like ANP is a potent diuretic, natriuretic, vasorelaxant, and aldosterone inhibitory peptide. BNP was found mainly secreted from the atria and play some role in the fluid electrolyte homeostasis. BNP was also found synthesized in extra-atrial tissues. To date, the physiological role of extra-cardiac natriuretic peptide is still unknown.
There were evidence indicating that adrenal gland may be the site of natriuretic peptides synthesis and suggested that adrenal natriuretic peptides may act in a paracrine or endocrine manner to regulate water and electrolyte homeostasis. To test this hypothesis, the present study was designed to determine whether or not ANP and BNP are synthesized in the human adrenal gland and, if so, to investigate the ANP and BNP content of adrenal tissue and the mRNA changes in patients with primary aldosteronism. A considerable amount of alpha-hANP-like and BNP-like immunoreactive substances were extracted from the remnant adrenal glands of patients with primary aldosteronism and the adrenal glands of donors for transplantation. High-performance gel permeation chromatography analysis coupled with a radioimmunoassay of the tissue extract showed that the molecular form of ANP in the adrenal gland was the precursor form, ie gamma-hANP. Immunohistochemical study with a specific anti-human BNP antibody revealed that BNP-like immunoreactivity was localized in the adrenal medullary area. An in situ hybridization study using ANP and BNP cRNA probes indicated that the ANP and BNP mRNAs were localized mainly in the medullary area of the gland. Northern blot analysis detected ANP and BNP mRNAs in the adrenal gland. Furthermore, the level of ANP and BNP mRNAs in the adrenal gland of patients with primary aldosteronism were obviously elevated as compared to those of the kidney donors. Using reverse transcription and polymerase chain reaction (RT-PCR) technique, BNP cDNA was cloned from the human adrenal gland, and the sequence was identical to that of BNP identified in the atria. Quantitative PCR measurements of BNP and ANP mRNA showed that both of the adrenomedullary natriuretic peptide gene transcriptions were enhanced in patients with primary aldosteronism, but the amount of ANP mRNA was far higher than that of BNP mRNA in the human adrenal gland.
Our results are the first to indicate that ANP and BNP are synthesized in the human adrenal medulla, and that such medullary ANP and BNP synthesis increased in patients with primary aldosteronism. These facts support the proposal that adrenomedullary natriuretic peptides may play some role in water and electrolyte homeostasis or act in a paracrine manner to regulate adrenocortical functions.
As the adrenal medulla is in close contact with adrenal cortex, a site of ANP action, adrenal medullary ANP is considered through paracrine manner to regulate cortical aldosterone biosynthesis. To investigate the paracrine roles of adrenal medullary ANP, we studied the possible route of action of medullary ANP in the adrenal gland. Immunohistochemical study with specific anti-prepro-human ANP antibody showed that ANP immunoreactive material was present mainly in the medullary area. ANP immunoreactive chromaffin cells, identified by using chromogranin-A antibody immunostaining, were found interwoven or in close apposition with cortical cells and some of which were localized in the zona glomerulosa area. Electron microscopical study revealed that there are secretory granules containing nerve terminals around the zona glomerulosa cells. By using immunocytochemical study with immunogold technique, ANP immunoreactivity was identified in the secretory granule of chromaffin cells, furthermore, the secretory granules of the nerve terminals were also found to contain immunoreactive ANP material. Microscopically, there were specialized spiral bundles of mainly longitudinal smooth muscle fibers in the wall of adrenal vein. Contraction of these muscle bundles may occlude the medullary veins and lead to damming up the blood in the medulla and adjacent cortex with a reversal of blood flow toward the cortex. Our results suggest that adrenal medullary ANP may through direct contact with cortical cells, the nerve route, or blood flow to regulate adrenal cortical steroidogenesis.
There were evidence indicating that kidney is a site of ANP synthesis and renal ANP synthesis play a role in renal pathophysiology. To investigate the role of renal synthesis of ANP, as contributors to the water-sodium homeostasis, we studied the effects of electrolyte-water imbalance on renal natriuretic peptides mRNA levels, plasma natriuretic peptide concentrations and urinary natriuretic peptide excretion rates by using RT-PCR and radioimmunoassay. The urinary sodium excretion rate and urine volume were significantly elevated at two days and remained elevated for the entire 10-day study period in the DOCA-salt rats. Using PCR cloning and sequencing technique, ANP cDNA was cloned from the rat kidney, and the sequences were identical to that of ANP identified in the atria. By semi-quantitative PCR technique, expression of ANP mRNA in the ventricle, and renal cortex tissues were significantly enhanced in the DOCA-salt rats. The urinary ANP excretion rate was also significantly increased in DOCA-salt rats at 2 days after treatment and was well correlated to the urinary sodium excretion rate. Plasma ANP level was elevated in the DOCA-salt rats on the day of sacrifice. In contrast, plasma renin activities were markedly suppressed in DOCA-salt rats and increased in Low-salt rats. By immunohistochemical study with specific ANP antibodies, immunoreactive ANP materials were localized mainly in the proximal and distal cortical tubules of the kidney. Our results confirm that rat kidney is a site of ANP synthesis and indicates that renal ANP synthesis is enhanced in volume expansion state. These findings support the proposal that renally synthesized atrial natriuretic peptide participates in the intra-renal regulation of water-electrolyte homeostasis, and may contribute to renal adaptation during the mineralocorticoid escape phenomenon.
In conclusion: extra-atrial (adrenal gland and kidney) natriuretic peptides synthesis are up-regulated in volume expansion state and may indicated that extra-atrial natriuretic peptide, through an autocrine or paracrine manner, play a role in fluid-electrolyte homeostasis.
封面
目錄
誌謝(Acknowledgments)
I. 中文摘要(Abstract in Chinese)
II. 英文摘要(Abstract in English)
第一章 緒論(General lntroduction)
1.1. 心房利鈉胜□(Atrial natriuretic peptide, ANP)的發現-
1.2. 心房利鈉胜□分泌與調節
1.3. 心房利鈉胜□與體液平衡
1.4. 心房外心心房利鈉胜□之合成及作用
1.5. 腎上腺心房利鈉胜□之合成
1.6. 腎臟心房心房利鈉胜□之合成
1.7. 腦利鈉胜□及C-型利鈉胜□
1.8. 研究背景
1.9. 研究目的
1.10. 研究步驟
第二章 原發性皮質醛酮過多症腎上腺髓質心房利鈉胜□之合成增加
(Increased adrenal medullary atrial natriuretic polypeptide synthesis in patients with primary aldosteronism)
2.1. 前言
2.2. 材料與方法
2.3. 結果
2.4. 討論
2.5. 圖表
第三章 腎上腺髓質可以合成腦利鈉胜□,在原發性皮質醛酮過多症腎上髓質腦利鈉胜□及心房利鈉胜□傳訊者核酸之表現增加
(Brain natriuretic peptide is synthesized int he human adrenal medulla and its messenger ribonucleic acid expression with along that of atrial natriuretic peptide are enhanced inpatients with primary aldosteronism)
2.1. 前言
2.2. 材料與方法
2.3. 結果
2.4. 討論
2.5. 圖表
第四章 腎上腺髓質利鈉胜□於腎上腺作用途徑之探討(A Study of Action Routes of Adrenal Medullary
Atrial Natriuretic Peptide on Adrenal Gland)
2.1. 前言
2.2. 材料與方法
2.3. 結果
2.4. 討論
2.5. 圖表
第五章 DOCA-鹽水處理大白鼠增加腎臟心房利鈉胜□之合成(Increased renal atrial natriuretic peptide
synthesis in rats with deoxycorticosterone acetate-salt treatment)
2.1. 前言
2.2. 材料與方法
2.3. 結果
2.4. 討論
2.5. 圖表
第六章 綜合討論與未來研究方向(Conclusions and future researches)
參考文獻 (References)
附錄 I 英文名稱縮寫及全名
附錄 II 發表相關論文之摘要
Aburaya M, Minamino N, Hino J, Kangawa K, Matsuo H. Distribution and molecular forms of brain natriuretic peptide in the central nervous system, heart and peripheral tissue of rat. Biochem Biophys Res Commun 1989;165: 880-887.
Antunes-Rodrigues J, Machado BH, Andrade HA, Mauad H, Ramalho MJ, Reis LC, Silva-Netto CR, Favaretto ALV, Gutkowska J, McCann SM. Carotid-aortic and renal baroreceptors mediate the atrial natriuretic peptide release induced by blood volume expansion. Proc Natl Acad Sci USA. 1992;89: 6828-6831.
Arai H, Nakao K, Saito Y, Morii N, Sugawara A, Yamada T, Itoh H, Shiono S, Mukoyama M, Ohkubo H, Nakanishi S, Imura H. Augmented expression of atrial natriuretic polypeptide gene in ventricles of spontaneously hypertensive rats (SHR) and SHR-stroke prone. Circ Res 1988;62: 926-930.
Arteaga E, Klein R, Biglieri EG. Use of saline infusion test to diagnose the cause of primary aldosteronism. Am J Med 1985;79: 722-728.
Asai J, NaKazato M, Toshimori H, Matsukura S, Kangawa K, Matsuo H. Presence of atrial natriuretic polypeptide in the pulmonary vein and vena cava. Biochem Biophys Res Commun 1987;146: 1465-1470.
Atarashi K, Mulrow PJ, Franco-Saenz R, Snajdar R, Rapp J. Inhibition of aldosterone production by an atrial extracts. Science 1984;224: 992-994.
Atarashi K, Mulrow PJ, Franco-Saenz R. Effects of atrial peptides on aldosterone release. J Clin Invest 1985;76: 1807-1811.
Awazu M, Ichikawa I. Biological significance of atrial natriuretic peptide in the kidney. Nephron 1993;63: 1-14.
Ballermann BJ, Bloch KD, Seidman JG, Brenner BM. Atrial natriuretic peptide transcription, secretion, and glomerular receptor activity during mineralocorticoid escape in the rat. J Clin Invest 1986;78: 840-843.
Blaine, E. H. Atrial natriuretic factor plays a significant role in body fluid homeostasis. Hypertension 1990;15: 2-8.
Bloch KD, Friedrich SP, Lee M-E, Eddy RL, Shows TB, Quertermous T. Structure organization and chromosomal assignment of the gene encoding endothelin. J Biol Chem 1989;264: 10851-10857.
Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA, Pfeiffer EF, HoIst JJ. Effect of splanchnic nerve stimulation on the adrenal cortex may be mediated by chromaffin cells in a paracrine manner. Endocrinology 1990;127: 900-906.
Bornstein SR, Ehrhart-Bornstein M, Usadel H, Bockmann M, Scherbaum WA. Morphological evidence for a close interaction of chromaffin cells with cortical cells within the adrenal gland. Cell Tissue Res 1991;265: 1-9.
Bornstein SR, Ehrhart-Bornstein M. Ultrastructural evidence for a paracrine regulation of the rat adrenal cortex mediated by the local release of catecholamines from chromaffin cells. Endocrinology 1992;131: 3126-3128.
Bornstein SR, Gonzalez-Hernandez JA, Ehrhart- Bornstein M, Adler G, Scherbaum WA. Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J Clin Endocrinol Metab 1994;78: 225-232.
Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML. Diverse biological actions of atrial natriuretic peptide. Physiol Rev 1990;70: 665-699.
Burnett JC, Granger JP, Opgenorth TJ. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 1984;247: F863-F866.
Burnett JC, Kao PC, Hu DC, Heser DW, Heublein DM, Granger JP, Opgenorth TJ, Reeder GS. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 1986;231: 1145-1147.
Burnett JC, Rubanyi GM, Edwards BS, Schwab TR, Zimmerman RS, Vanhoutte PM. Atrial natriuretic peptide decreases arterial pressure in the absence of coronary vasoconstriction. Proc Soci Exper Biol Med 1987;186: 313-318.
Campbell WB and Needleman P. Inhibition of aldosterone biosynthesis by atriopeptins in rat adrenal cells. Circ Res 1985:57: 113-118
Cantin M, Gutkowska J, Thibault G, Milne RW, Ledoux S, MinLi S, Chapeau C, Garcia R, Hamet P, Genest J. Immunocytochemical localization of atrial natriuretic factor in the heart and salivary glands. Histochemistry 1984;80: 113-127.
Chartier L, Schiffrin EL, Thibault G, Garcia R. Atrial natriuretic factor inhibits the effect of angiotensin II, ACTH, and potassium on aldosterone secretion in vitro and angiotensin II induced steroidogenesis in vivo. Endocrinology 1984;115:2026-2028.
Chien CH, Tsai JH, Lee YJ. Atrial natriuretic polypeptide in human adrenal pheochromocytoma: immunohistochemical and immunoelectron microscopical localization. Endocrinol Japn 1990;37: 121-130.
Chen J-H, Tsai J-H, Lai Y-H, Hwang S-J. Plasma atrial natriuretic peptide (ANP) in primary aldosteronism. J Formosan Med Assoc 1988;87: 851-856.
Chomczynski P and Sacchi N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162: 156-159.
Clavell AL, Stingo AJ, Wei C, Heublein DM, Burnett JrJC. C-type natriuretic peptide: a selective cardiovascular peptide. Am J Physiol 1993;264: R290-R295.
Cuneo RC, Espiner EA, Nicholls MG, Yandle TG, Livesey JH. Effect of physiological levels of atrial natriuretic peptide on hormone secretion: inhibition of angiotensin-induced aldosterone secretion and renin release in normal man. J Clin Endocrinol Metab 1987;65: 765-772.
Currie MG, Geller DM, Cole BR, Boylan JG, YuSheng W, Holmberg SW, Needleman P. Bioactive cardiac substances: Potent vasorelaxant activity in mammalian atria. Science 1983;221: 71-73.
Dagnino L, Drouin J, Nemer M. Differential expression of natriuretic peptide genes in cardiac and extracardiac tissues. Mol Endocrinol 1991;5: 1292-1300.
Dean AD, Vehaskari VM, Greenwald JE. Synthesis and localization of C-type natriuretic peptide in mammalian kidney. Am J Physiol 1994;266: F491-F496.
De Bold AJ. Heart atrial granularity effects of changes in water-electrolyte balance. Proc Soc Exp Biol Med 1979;161: 508-511.
De Bold AJ, Bornstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci 1981;28: 89-94.
De L’ean A, Gutkowska J, McNicoll N, Schiller PW, Cantin M, Genest J. Characterization of specific receptors for atrial natriuretic factor in bovine zona glomerulosa. Life Sci 1984;35: 2311-2318
De L’ean A, Racs K, Gutkowska J, Nguyen TT, Cantin M, Genest J. Specific receptor mediated inhibition by synthetic atrial natriuretic factor of hormone stimulated steroidogenesis in cultured bovine adrenal cells. Endocrinology 1984;115: 1636-1638.
De L’ean A, Ong H, McNicoll N, Racz K, Gutkowska J, Cantin M. Identification of aldosterone secretion inhibitory factor in bovine adrenal medulla. Life Sci 1985;36: 2375-2382
De Wardener HE, Mills IU, Clapham WF. Studies on the efferent mechanism of sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci 1961;21; 249-258.
Dillingham MA, Anderson RJ. Inhibition of vasopressin action by atrial natriuretic factor. Science 1986;231: 1572-1573.
Ding J, Thibault G, Gutkowska J, Garcia R, Karabatsos T, Jasmin G, Genet J, Cantin M. Cardiac and plasma atrial natriuretic factor in experimental congestive heart failure. Endocrinology 1987;21: 248-257.
Drummer C, Fiedler F, Konig A, Gerzer R. Urodilatin, a kidney-derived natriuretic factor, is excreted with a circadian rhythm and is stimulated by saline infusion in man. J Am Soc Nephrol 1991;1: 1109-1113.
Drummer C, Gerzer R, Heer M, Molz B, Bie P, Schlossbeeger M, Stadaeger C, Rocker L, Strollo F, Heyduck B, Bauer K, Warberg J, Baisch F, Christensen NJ, Konig A, Norsk P. Effects of an acute saline infusion on fluid and electrolyte metabolism in humans. Am J Physiol 1992;262: F744-F754.
Drewett J, Marchand G, Ziegler R, Trachte G. Atrial natriuretic factor inhibits norepinephrine release in an adrenergic cell line. European J Pharmacol 1988;150: 175-179.
Dunn BR, Ichikawa I, Pfeffer JM, Troy JL, Brenner BM. Renal and systemic hemodynamic effects of synthetic atrial natriuretic peptide in the anesthetized rat. Circ Res 1986;59: 237-246.
Duntas L, Bornstein S R, Scherbaum WA, Hoslt JJ. Atrial natriuretic peptide-like immunoreactive material (ANP-LI) is released from the adrenal gland by splanchnic nerve stimulation. Exp Clin Endocrinol 1993;101: 371-373.
Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998;19: 101-143.
Emmeluth C, Drummer C, Gerzer R, Bie P. Roles of cephalic Na+ concentration and urodilatin in control of renal Na+ excretion. Am J Physiol 1992;262: F513-F516.
Espiner EA. Minisymposium: the natriuretic peptide hormones. Physiology of natriuretic peptides. J Int Med 1994; 235: 527-541.
Fitts DA, Thunhorst RL, Simpson JB. Diuresis and reduction of salt appetite by lateral ventricular infusion of atriopeptin II. Brain Res 1985;348: 118-124.
Forssmann W-G. Urodilatin (Ularitide, INN): A renal natriuretic peptide. Nephron 1995;69: 211-222.
Forssmann W-G, Richter R, Meyer M. The endocrine heart and natriuretic peptides: histochemistry, cell biology, and functional aspects of renal urodilatin system. Histochem Cell Biol 1998;110: 335-357.
Fried TA, McCoy RN, Osgood RW, Stein JH. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am J Physiol 1986;250: F1119-F1122.
Fujita T, Ito Y, Noda H, Sato Y, Ando K, Kangawa K, Matsuo H. Vasodilatory actions of a-human atrial natriuretic peptide and high Ca+2 effects in normal man. J Clin Invest 1987;80: 832-840.
Gagelmann M, Hock D, Forssmann WG. Urodilatin (CCD/ANP-95-126) is not biologically inactivated by a peptidase from dog kidney cortex membranes in contrast to atrial natriuretic peptide/cardiodilatin (a-ANP/CDD-99-126). FEBS Lett 1988;233: 249-254.
Gallo-Payet N, Pothier P, Isler H. On the presence of chromaffin cells in the adrenal cortex: their possible role in a adrenocortical function. Biochem Cell Biol 1987;65: 588-592.
Gardner DG, Deschepper CF, Baxter JD. The gene for the atrial natriuretic factor in the aortic arch. Hypertension 1987;9: 103-106.
Genest J. The atrial natriuretic factor. Br Heart J 1986;56: 302-316.
Goetz KL, Wang BC, Geer PG, Leadley Jr RJ, Reinhardt HW. Atrial stretch increases sodium excretion independently of atrial peptides. Am J Physiol 1986;250: R946-R950.
Goetz KL. Evidence that atriopeptin is not a physiological regulator of sodium excretion. Hypertension 1990;15: 9-19.
Goetz K, Drummer C, Zhu JL, Leadley R, Fiedler F, Gerzer R. Evidence that urodilatin, rather than ANP, regulates renal sodium excretion. J Am Soc Nephrol 1990;1: 867-874.
Golomb E, Friedman E, Abassi ZA, Trachewwsky D, Keiser HR. Rare renal transcription of the atrial natriuretic factor gene in rats. Demonstration by polymerase chain reaction. Am J Hypertens 1993;6: 867-872.
Gonzalo-Sanz LM and Insausti R. The structure of the suprarenal venous system and its possible functional significance. Acta Anat 1976;95: 307-318.
Greenwald JE, Needleman P, Wikins M, Schreiner GF. Renal synthesis of atriopeptin-like protein in physiology and pathophysiology. Am J Physiol 1991;260: F602-F607.
Greenwald JE, Ritter D, Tetens E, Rotwein PS. Renal expression of the gene for atrial natriuretic factor. Am J Physiol 1992;263: F974-F978.
Gutkowska J and Cantin M. Bioactive atrial natriuretic factor-like peptides in rat anterior pituitary. Can J Physiol Pharmacol 1988;66: 270-275.
Gutkowska J and Nemer M. Structure, expression, and function of atrial natriuretic factor in extraatrial tissues. Endocr Rev 1989;10: 519-536.
Gutkowska J, Nemer M, Sole MJ, Drouin J, Sirois P. Lung is an important source of atrial natriuretic factor in experimental cardiomyopathy. J Clin Invest 1989;83: 1500-1504.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 賈紅鶯 (民84):青少年的自我分化及其在輔導上的應用─家庭系統取向。諮商與輔導,119期,25-29頁。
2. 葉明華、楊國樞 (民86):中國人的家族主義:概念分析與實徵衡鑑。中央研究院民族學研究所集刊,83期,169-225頁。
3. 葉光輝、孫世維、利翠珊、趙淑珠 (民86):家庭心理學的開展與研究特點。中華心理衛生學刊,10卷,2期,19-43頁。
4. 張寶珠 (民82):從家庭治療理論看子女管教問題。諮商與輔導,92期,9-14頁。
5. 黃光國 (民88):知其短,守其長:論「系統思維」的特色與限制。應用心理研究,3期,1-8頁。
6. 陳麗英 (民84):家庭功能的評估。中華心理衛生學刊,8卷3期,31-44頁。
7. 曾端真 (民87):從家庭結構觀點論親職功能。測驗與輔導,151期,3128-3131頁。
8. 柯永河 (民86):修訂後之柯氏性格量表(KMHQ 1996)內容,信效度常模及其使用說明。測驗年刊,44輯,1期,3-28頁。
9. 吳麗娟 (民88):「共依附」父母的親職教育:放下孩子,釋放自己。諮商與輔導,157期,17-23頁。
10. 吳麗娟 (民87c):唯有放下他人,才能釋放自己─談「共依附」的治療模式。諮商與輔導,145期,18-23頁。
11. 吳麗娟 (民87b):「共依附」父母特質與其對孩子的影響。諮商與輔導,154期,12-19頁。
12. 吳麗娟 (民87a):父母自我分化、教養態度對青少年子女自我分化、因應策略與適應影響之研究。教育心理學報,30卷,1期,91-132頁。
13. 吳麗娟 (民86b):「共依附」的特質與治療。測驗與輔導,145期,3011-3014頁。
14. 吳麗娟 (民86a):「個體化」、「自我分化」的另一端─談「共依附」的意義與內涵。諮商與輔導,144期,33-37頁。
15. 王大維 (民84):從Minuchin的結構家族治療理論談家庭系統中的權力關係。諮商與輔導,115期,5-10頁。