跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴雨聖
研究生(外文):Lai, Yu-Sheng
論文名稱:運用準亂數抽樣技術改進半參數型極端涉險值模型之估計
論文名稱(外文):Improve the Estimation of Extreme Value-at-Risk by Quasi-Random Sampling Technique
指導教授:盧陽正盧陽正引用關係
指導教授(外文):Lu, Yang-Cheng Ph.D.
學位類別:碩士
校院名稱:銘傳大學
系所名稱:金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:43
中文關鍵詞:涉險值(Value-at-RiskVaR)肥尾現象模式風險極端值理論壓力測試回溯測試準亂數
外文關鍵詞:Value-at-RiskVaRfat-tailmodel riskExtreme Value Theorystress testingbacktestingquasi-random numbers
相關次數:
  • 被引用被引用:9
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
合理之涉險值量化模型應以機率理論中之最大順序統計量(maximum order statistic)的觀點出發,並依據極端值理論(extreme value theory)建構出涉險值之可能分配形態。此種理念不但可去除不合理之常態分配假設,而且可以精確地捕捉金融資產報酬之肥尾現象,並進一步了解損失與發生機率間的對應關係,成為壓力測試(stress testing)執行之參考。Danielsson與de Vries(1997)所提出之半參數型極端涉險值估計模型,利用半參數估計法結合歷史資訊,以構建出投資組合報酬率分配左端之累積機率密度函數,並可用以構建適當之壓力情境機率計量模型。惟該模型參數之拔靴估計程序必須仰賴電腦模擬以進行樣本之隨機抽樣(random sampling),鑒於藉助一般套裝軟體發展的亂數產生器(random number generator)產生的亂數群所具有之群聚(clustering)現象將降低涉險值估計之精確性並增加參數估計之均方差(mean squared error, MSE)。緣此,本研究擬利用準亂數(quasi-random)產生器之修正技術,改進Danielsson與de Vries(1997)之半參數型極端涉險值估計模型,期能增進估計效率及降低估計偏誤,並有效捕捉投資組合之下方風險。
Accurate prediction of the frequency of extreme events is of primary importance in many financial applications such as Value-at-Risk (VaR) analysis. We improve the estimation procedure of the semi-parametric method that is announced by Danielsson and de Vries (1997) for VaR evaluation. For estimations and predictions of low probability worst outcomes, semi-parametric method has to apply the Hall’s (1990) subsample bootstrap methods. However in the procedure of subsample bootstrap, the estimates obtained from applying the pseudo-random numbers are less accurate and efficient in the VaR prediction. We propose a new quasi-random sampling technique, which is very useful for applications of semi-parametric method. Quasi-random sampling technique use sequences that are deterministic instead of random. These sequences will improve the convergence of extreme VaR estimation. In addition, we both use the backtesting and stress testing method to evaluate the performance of extreme VaR estimation. Finally, we also prove that why Basle Committee on Banking Supervisory set the lowest scaling factor as 3.
第一章 緒論
第一節 研究背景與動機
第二節 研究問題與目的
第三節 研究流程
第四節 論文架構
第二章 文獻探討
第一節 變異數--共變異數法
第二節 蒙地卡羅模擬法
第三節 歷史模擬法
第四節 國內相關文獻
第三章 研究方法
第一節 半參數型極端涉險值模型
第二節 準亂數抽樣技術
第三節 回溯測試
第四節 本研究所使用方法論之流程
第四章 實證結果與分析
第一節 蒙地卡羅模擬實驗
第二節 準亂數抽樣技術之改進情形
第三節 回溯測試結果
第四節 亞洲金融危機與壓力測試
第五章 結論與建議
第一節 結論
第二節 後續建議
參考文獻
1. Aggarwal, R., C. Inclan, and R. Leal, “Volatility in Emerging Stock Market”, Journal of Financial and Quantitative Analysis 34(1): 33-55, 1999.
2. Alexander, C., Risk Management and Analysis, John Wiley & Sons, 1998.
3. Alexander, J. M., “Extreme Value Theory for Risk Management”, working paper, 1999.
4. Basle (1988) International Convergence of Capital Measurement and Capital Standards. Basle: Basle Committee on Banking Supervision, Bank of International Settlements.
5. Basle (1995) An Internal Model-Based Approach to Market Risk Capital Requirements. Basle: Basle Committee on Banking Supervision, Bank of International Settlements.
6. Basle (1996a) Amendment to the Capital Accord to Incorporate Market Risks. Basle: Basle Committee on Banking Supervision, Bank of International Settlements.
7. Basle (1996b) Overview of the Amendment to the Capital Accord to Incorporate Market Risks. Basle: Basle Committee on Banking Supervision, Bank of International Settlements.
8. Basle (1996c) Supervisory Framework for the Use of Backtesting in Conjunction with the Internal Models Approach to Market Risk Capital Requirements. Basle: Basle Committee on Banking Supervision, Bank of International Settlements.
9. Basle (1999) A New Capital Adequacy Framework. Basle: Basle Committee on Banking Supervision, Bank of International Settlements.
10. Danielsson, J., C. G. de Vries, and B. N. Jorgensen, “The Value of Value at Risk: Statistical, Financial, and Regulatory Considerations”, FRBNY Economic Policy Review, October 1998.
11. Danielsson, J., and C. G. de Vries, ”Value-at-Risk and Extreme Returns”, working paper, September 1997.
12. Danielsson, J., and C. G. de Vries, ”Tail Index and Quantile Estimation with Very High Frequency Data”, Journal of Empirical Finance 4: 241-257, 1997.
13. Danielsson, J., L. de Hann, L. Peng, and C. G. de Vries, “Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation”, working paper, 1997.
14. Danielsson, J., and P. Hartmann, “The Cost of Conservatism: Extreme Returns, Value-at-Risk, and the Basle ‘Multiplication Factor’”, working paper, 1998.
15. De Hann, L., and Stadtmuller, U., “Generalized Regular Variation of Second Order”, Journal of the Australian Mathematical Society, Series A, 61, pp. 381-395, 1996.
16. Dunbar, N., and R. Irving, 1998, This is the Way the World Ends, Risk (Dec), 28-32.
17. Embrechts, P., C. , and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Berlin: Springer-Verlag, 1997.
18. Embrechts, P., S. I. Resnick, and G. Samorodnitsky, “Extreme Value Theory as a Risk Management Tool”, North American Actuarial Journal 3(2), 1999.
19. Faure, H., “ de Suites un de ”, Acta Arithmetica 41: 337-51, 1982.
20. Fox, P., “ALGORITHM 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators”, ACM Trans. Math. Software 12: 362-76, 1986.
21. Gizycki, M., and N. Hereford, “Assessing the Dispersion in Banks’ Estimates of Market Risk: The Results of a Value-at-Risk Survey”, Australian Prudential Regulation Authority, Discussion Paper, 1, 1998.
22. Hall, P., “Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing Parameter in Nonparametric Problems”, Journal of Multivariate Analysis 32: 177-203, 1990.
23. Hill, B. M., “A Simple General Approach to Inference about the Tail of a Distribution”, Ann. Statist. 3: 1163-1174, 1975.
24. Jorion, P., Value at Risk: The New Benchmark for Controlling Market Risk, IRWIN, 1996.
25. Joy, C., P. P. Boyle, and Ken Seng Tan, ”Quasi-Monte Carlo Methods in Numerical Finance ”, Monte Carlo, Risk Books, 1998.
26. J.P. Morgan, RiskMetrics Technical Document, Fourth Edition, 1996.
27. Longin, F. M., “The Asymptotic Distribution of Extreme Stock Market Returns”, Journal of Business 69(3): 383-408, 1996.
28. Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, PA, 1992.
29. RiskMetrics Group, RiskMetrics Technical Document, Forth Edition, 1996.
30. RiskMetrics Group, Risk Management: A Practical Guide, First Edition, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊